Home
Search results “Which can form hydrogen bonds”
Hydrogen Bonds - What Are Hydrogen Bonds - How Do Hydrogen Bonds Form
 
02:48
In this video we discuss hydrogen bonds. We cover how do hydrogen bonds form, the different elements that take part in hydrogen bonds, and why doesn't oil and water mix. What are hydrogen bonds? An attractive force called a hydrogen bond can exist between certain molecules. These bonds are weaker than ionic or covalent bonds, because it takes less energy to break these types of bonds, however, a large number of these bonds going on can exert a strong force. Hydrogen bonds are the result of an unequal charge distribution on a molecule, these molecules are said to be polar. If we look at a water molecule, we can see the oxygen atom shares electrons with 2 different hydrogen atoms. So, in total this molecule has 10 protons, 8 from oxygen and 1 each from the hydrogen atoms, and a total of 10 electrons, 2 shared between the oxygen atom and hydrogen atom number one, 2 shared between the oxygen atom and hydrogen atom number 2, and the other 6 non shared electrons from the oxygen atom. So, this water molecule is electrically neutral, but it has a partial positive side, the hydrogen side, and a partial negative side, the oxygen side of the molecule. The electrons are not shared equally within the molecule, as they have a higher probability of being found closer to the nucleus of the oxygen atom, giving that end a slightly negative charge. So, the hydrogen atoms end of the molecule will have a slightly positive charge. These charged ends weakly attach the positive end of one water molecule to the negative end of an adjacent water molecule. When water is in liquid form there a few hydrogen bonds, solid form, many bonds, and when water is steam or gas, there are no bonds, because the molecules are too far apart to form any bonds. Hydrogen bonds only form between hydrogen atoms that are covalently bonded, or bonds where electrons are being shared and not transferred, to an oxygen, nitrogen or fluorine atom. These bonds make water ideal for the chemistry of life. Hydrogen bonds are also important in the structure of proteins and nucleic acids, which we will cover in later videos. So, now we know that water molecules are polar, or have slightly positive and slightly negative ends, and in fact, many lipids, or fats and oils, are not polar. So their molecules share electrons equally in their bonds. So, these are nonpolar molecules. This means that when water and oil come together they do not form bonds with one another. Even when we try to mix them, the water molecules will eventually separate because their polar molecules are attracted to one another and will form hydrogen bonds, separating the water and the nonpolar oil molecules.
Views: 53838 Whats Up Dude
Hydrogen Bonding and Common Mistakes
 
09:00
To see all my Chemistry videos, check out http://socratic.org/chemistry Hydrogen bonding can be so confusing, and in this video we talk about some common mistakes. Hydrogen bonds are intermolecular forces between molecules. They form because one atom has a high electronegativity, so it gets a partial negative charge, and the hydrogen gets a partial positive charge.
Views: 503616 Tyler DeWitt
Hydrogen bonding in water | Water, acids, and bases | Biology | Khan Academy
 
06:47
Reactants and products in reversible and irreversible chemical reactions. Watch the next lesson: https://www.khanacademy.org/science/biology/water-acids-and-bases/hydrogen-bonding-in-water/v/hydrogen-bonding-in-water?utm_source=YT&utm_medium=Desc&utm_campaign=biology Missed the previous lesson? https://www.khanacademy.org/science/biology/chemistry--of-life/chemical-bonds-and-reactions/v/intermolecular-forces-and-molecular-bonds?utm_source=YT&utm_medium=Desc&utm_campaign=biology Biology on Khan Academy: Life is beautiful! From atoms to cells, from genes to proteins, from populations to ecosystems, biology is the study of the fascinating and intricate systems that make life possible. Dive in to learn more about the many branches of biology and why they are exciting and important. Covers topics seen in a high school or first-year college biology course. About Khan Academy: Khan Academy offers practice exercises, instructional videos, and a personalized learning dashboard that empower learners to study at their own pace in and outside of the classroom. We tackle math, science, computer programming, history, art history, economics, and more. Our math missions guide learners from kindergarten to calculus using state-of-the-art, adaptive technology that identifies strengths and learning gaps. We've also partnered with institutions like NASA, The Museum of Modern Art, The California Academy of Sciences, and MIT to offer specialized content. For free. For everyone. Forever. #YouCanLearnAnything Subscribe to Khan Academy's Biology channel: https://www.youtube.com/channel/UC82qE46vcTn7lP4tK_RHhdg?sub_confirmation=1 Subscribe to Khan Academy: https://www.youtube.com/subscription_center?add_user=khanacademy
Views: 255443 Khan Academy
Hydrogen Bonding
 
11:22
This chemistry video tutorial explains how to determine which molecules are capable of exhibiting hydrogen bonding. Examples and practice problems include the following molecules: H2O, CH4, CH3F, HF, CH3OH, CH3OCH3, CH3COOH, CH3CHO, H2S, NH3, PH3, (CH3)3N, (CH3)2NH, C2H4, C2H2, HOCH2CH2OH, CH3SH, and CH3CONH2. This video also discusses the difference between a hydrogen bond and a covalent bond and the difference between an intermolecular bond and an intramolecular bond. it shows the formation and hydrogen bonding that occurs between water molecules.
Hydrogen Bonds In Water Explained - Intermolecular Forces
 
10:54
This chemistry video tutorial provides a basic introduction into hydrogen bonding. Hydrogen bonding occurs in molecules when hydrogen is attached to highly electronegative small atoms such as nitrogen, oxygen, and fluorine. Hydrogen bonds are very strong dipole dipole interactions. Molecules that contain hydrogen bonds such as water are very polar. Hydrogen bonds is one of the strongest types of intermolecular forces. This video contains a few examples and illustrations of hydrogen bonds in water and in HF. New Chemistry Video Playlist: https://www.youtube.com/watch?v=bka20Q9TN6M&t=25s&list=PL0o_zxa4K1BWziAvOKdqsMFSB_MyyLAqS&index=1 Access to Premium Videos: https://www.patreon.com/MathScienceTutor Facebook: https://www.facebook.com/MathScienceTutoring/
Hydrogen Bonds
 
05:24
Watch more videos on http://www.brightstorm.com/science/biology SUBSCRIBE FOR All OUR VIDEOS! https://www.youtube.com/subscription_center?add_user=brightstorm2 VISIT BRIGHTSTORM.com FOR TONS OF VIDEO TUTORIALS AND OTHER FEATURES! http://www.brightstorm.com/ LET'S CONNECT! Facebook ► https://www.facebook.com/brightstorm Pinterest ► https://www.pinterest.com/brightstorm/ Google+ ► https://plus.google.com/+brightstorm/ Twitter ► https://twitter.com/brightstorm_ Brightstorm website ► https://www.brightstorm.com/
Views: 124601 Brightstorm
Ionic and Covalent Bonds, Hydrogen Bonds, van der Waals - 4 types of Chemical Bonds in Biology
 
08:50
There are four types of chemical bonds essential for life to exist: Ionic Bonds, Covalent Bonds, Hydrogen Bonds, and van der Waals interactions. We need all of these different kinds of bonds to play various roles in biochemical interactions. These bonds vary in their strengths. In Chemistry, we think of Ionic Bonds and Covalent bonds as having an overlapping range of strengths. But remember, in biochemistry, everything is happening in the context of water. This means Ionic bonds tend to dissociate in water. Thus, we will think of these bonds in the following order (strongest to weakest): Covalent, Ionic, Hydrogen, and van der Waals. Also note that in Chemistry, the weakest bonds are more commonly referred to as “dispersion forces.” Related Chemistry video: Ionic Bonds vs Covalent Bonds http://bit.ly/2cUG6C8 Our series on Biology is aimed at the first-year college level, including pre-med students. These videos should also be helpful for students in challenging high school biology courses. Perfect for preparing for the AP Biology exam or the Biology SAT. Also appropriate for advanced homeschoolers. You can also follow along if you are just curious, and would like to know more about this fascinating subject. ***** Our current biology textbook recommendation is Campbell Biology from Pearson. 10th edition Amazon Link: http://amzn.to/2mahQTi 11th edition Amazon Link: http://amzn.to/2m7xU6w Amazon Used Textbooks - Save up to 90% http://amzn.to/2pllk4B For lighter reading, we recommend: I Contain Multitudes: The Microbes Within Us and a Grander View of Life by Ed Yong http://amzn.to/2pLOddQ Lab Girl by Hope Jahren http://amzn.to/2oMolPg ***** This video was made possible by the generous donations of our Patrons on Patreon. We dedicate this video to our VIP Patron, Vishal Shah. We’re so thankful for your support! ***** Please Subscribe so you'll hear about our newest videos! http://bit.ly/1ixuu9W If you found this video helpful, please give it a "thumbs up" and share it with your friends! If you'd like to support more great educational videos from Socratica, please consider becoming our Patron on Patreon! https://www.patreon.com/socratica ***** Written and Produced by Kimberly Hatch Harrison About our instructor: Kimberly Hatch Harrison received degrees in Biology and English Literature from Caltech before working in pharmaceuticals research, developing drugs for autoimmune disorders. She then continued her studies in Molecular Biology (focusing on Immunology and Neurobiology) at Princeton University, where she began teaching as a graduate student. Her success in teaching convinced her to leave the glamorous world of biology research and turn to teaching full-time, accepting a position at an exclusive prep school, where she taught biology and chemistry for eight years. She is now the head writer and producer of Socratica Studios. ****** Creative Commons Picture Credits: Salt crystals https://en.wikipedia.org/wiki/File:Halit-Kristalle.jpg Author: W.J. Pilsak Hydrogen Bonding in water https://en.wikipedia.org/wiki/File:3D_model_hydrogen_bonds_in_water.svg Author: Qwerter Products in this video: Preparing for the Biology AP* Exam (School Edition) (Pearson Education Test Prep) - http://amzn.to/2qJVbxm Cracking the AP Biology Exam, 2017 Edition: Proven Techniques to Help You Score a 5 (College Test Preparation) - http://amzn.to/2qB3NsZ Cracking the SAT Biology E/M Subject Test, 15th Edition (College Test Preparation) - http://amzn.to/2qJIfHN
Views: 29698 Socratica
Atomic Hook-Ups - Types of Chemical Bonds: Crash Course Chemistry #22
 
09:46
Atoms are a lot like us - we call their relationships "bonds," and there are many different types. Each kind of atomic relationship requires a different type of energy, but they all do best when they settle into the lowest stress situation possible. The nature of the bond between atoms is related to the distance between them and, like people, it also depends on how positive or negative they are. Unlike with human relationships, we can analyze exactly what makes chemical relationships work, and that's what this episode is all about. If you are paying attention, you will learn that chemical bonds form in order to minimize the energy difference between two atoms or ions; that those chemical bonds may be covalent if atoms share electrons, and that covalent bonds can share those electrons evenly or unevenly; that bonds can also be ionic if the electrons are transferred instead of shared: and how to calculate the energy transferred in an ionic bond using Coulomb's Law. -- Table of Contents Bonds Minimize Energy 01:38 Covalent Bonds 03:18 Ionic Bonds 05:37 Coulomb's Law 05:51 -- Want to find Crash Course elsewhere on the internet? Facebook - http://www.facebook.com/YouTubeCrashCourse Twitter - http://www.twitter.com/TheCrashCourse Tumblr - http://thecrashcourse.tumblr.com Support CrashCourse on Subbable: http://subbable.com/crashcourse
Views: 1591592 CrashCourse
How hydrogen bonding works
 
01:34
Hydrogens attached to small, highly electronegative atoms can hydrogen bond. Namely N, O and F. Watch more of this topic at ► http://bit.ly/28J1r0F GET MORE CLUTCH! VISIT our website for more of the help you need: http://bit.ly/28J6m3M SUBSCRIBE for new videos: http://cltch.us/1axA33X --- LET'S CONNECT! Facebook: http://cltch.us/1JLgiSZ Twitter: http://cltch.us/1NLcKpu Instagram: http://cltch.us/1If5pb7 Google+: http://cltch.us/1E34o85 Clutch Prep = Textbook specific videos to help you pass your toughest science classes.
Views: 4464 Clutch Prep
Which amino acids can form hydrogen bonds
 
01:59
Which amino acids can form hydrogen bonds - Find out more explanation for : 'Which amino acids can form hydrogen bonds' only from this channel. Information Source: google
Views: 66 atunakai1b
Hydrogen Bonding | Chemistry | Chegg Tutors
 
04:56
Hydrogen bonding is an intermolecular or intramolecular attraction that occurs between molecules with hydrogen bond donors and molecules with hydrogen bond acceptors. Hydrogen bond donors are molecules that have a hydrogen attached to an electronegative atom (for example, hydroxyls or amines). Hydrogen bond acceptors are molecules that have a lone pair of electrons located on an electronegative atom (for example, oxygen, nitrogen, or fluorine). Hydrogen bonds are not as strong as covalent and ionic bonds but are stronger than van der Waals interactions. Hydrogen bonding is responsible for the high boiling point of water and is important for the organization of complementary chains of base pairs in DNA and RNA. ---------- Chemistry tutoring on Chegg Tutors Learn about Chemistry terms like Hydrogen Bonding on Chegg Tutors. Work with live, online Chemistry tutors like Jamie B. who can help you at any moment, whether at 2 pm or 2 am. Liked the video tutorial? Schedule lessons on-demand or schedule weekly tutoring in advance with tutors like Jamie B. Visit: https://www.chegg.com/tutors/Chemistry-online-tutoring/?utm_source=youtube&utm_medium=video&utm_content=managed&utm_campaign=videotutorials ---------- About Jamie B., Chemistry tutor on Chegg Tutors: Harvard University, Class of 2013 BA Mathematics & English, MS Applied Mathematics major Subjects tutored: SAT, SAT II Latin, Geometry, Chemistry, Set Theory, Physics, R Programming, Latin, Discrete Math, Computer Science, MATLAB, English, Psychology, Writing, Literature, Geometry (College Advanced), Biology, Linguistics, Study Skills, Number Theory, Statistics, Applied Mathematics, Numerical Analysis, Linear Algebra, Basic Math, and Calculus TEACHING EXPERIENCE I'm a certified Math and English teacher for grades 8-12 in Massachusetts. Right now, I focus on gifted students with learning disabilities, ADHD, and mental health challenges who may be underperforming and overstressed in their classes. I can work with you if you have diagnosed LD or simply learn best outside of a traditional lecture and textbook format. If I don't know about something, I will tell you that openly, I'll point to where you might be able to find that information, and I'll learn more about it for next time. I'm strongest as a teacher when I'm working one-on-one and my favorite part of teaching is "diagnosing" where a student's thinking might be leading them astray (or ahead!)I got my Masters at Harvard in Applied Math, focusing on statistics and advanced mechanics/physics applied to biology. I taught and tutored Organic Chemistry, Precalculus, Calculus, proof-based Linear Algebra and Real Analysis, and Intro to Applied Math (for majors) at Harvard. I also work with student writing for classes, projects and graduate applications as a tutor in my undergraduate house. I've tutored everything from 5th grade math to competitive math teams to graduate school pure math and engineering. I've worked with Master's Engineering students studying for the TOEFL alongside high school sophomores in my Saturday volunteer creative writing classes, and I've tutored undergraduates at Harvard and helped develop curriculum in proof-based math and numerical experimentation-driven freshman physics. EXTRACURRICULAR INTERESTS I'm from Brooklyn, NY. I'm a city kid who could stare at the stars all night, which I do when I visit my family in rural Canada. I love biking, choral singing, performing poetry, teaching in all settings and with all people, and crisis management and education for mental health. I'm always looking to get into new art forms, learn new languages and pursue things where my gaps lead me. I also have difficulty keeping a straight face for more than a few minutes (or a paragraph) at a time. Want to book a private lesson with Jamie B.? Message Jamie B. at https://www.chegg.com/tutors/online-tutors/Jamie-B-224764/?utm_source=youtube&utm_medium=video&utm_content=managed&utm_campaign=videotutorials ---------- Like what you see? Subscribe to Chegg's Youtube Channel: http://bit.ly/1PwMn3k ---------- Visit Chegg.com for purchasing or renting textbooks, getting homework help, finding an online tutor, applying for scholarships and internships, discovering colleges, and more! https://chegg.com ---------- Want more from Chegg? Follow Chegg on social media: http://instagram.com/chegg http://facebook.com/chegg http://twitter.com/chegg
Views: 1567 Chegg
How many hydrogen bonds can water form
 
01:55
How many hydrogen bonds can water form - Find out more explanation for : 'How many hydrogen bonds can water form' only from this channel. Information Source: google
Views: 20 Arif HD
Intermolecular Forces - Hydrogen Bonding, Dipole-Dipole, Ion-Dipole, London Dispersion Interactions
 
45:36
This chemistry video tutorial focuses on intermolecular forces such hydrogen bonding, ion-ion interactions, dipole dipole, ion dipole, london dispersion forces and van deer waal forces. It contains plenty of examples and practice problems to help you understand the most important concepts related to this material. General Chemistry Video Playlist: https://www.youtube.com/watch?v=bka20Q9TN6M&list=PL0o_zxa4K1BV-uX6wXQgyqZXvRd0tUUV0&index=3 Access to Premium Videos: https://www.patreon.com/MathScienceTutor Facebook: https://www.facebook.com/MathScienceTutoring/ Here is a list of topics: 1. Ion - Ion dipole interactions of KF and CaO 2. Electrostatic Force and Lattice Energy- The effect of charge and ionic radii or size 3. How To Determine Which Ionic Compound has a Higher Melting Point - NaF vs KCl 4. Ion-Dipole Interactions - NaCl and H2O 5. Definition of a Dipole - Polar Molecules & Charge Separation 6. Dipole-Dipole Interactions of Polar Molecules - Partial Charge Electrostatic Attractions of CO 7. Hydrogen Bonding between Hydrogen, Nitrogen, Oxygen, and Fluorine 8. Intermolecular Forces vs Intramolecular Forces 9. Hydrogen Bonding vs Polar & Nonpolar Covalent Bonds 10. London Dispersion Forces & Van Der Waals Forces 11. Permanent Dipoles and Temporary Induced Dipoles - Distribution of electrons in electron cloud 12. Difference Between Atoms and Ions - Cations vs Anions - Number of Electrons and Protons 13. The relationship between Polarizability and Dispersion Forces 14. How To Determine the Strongest Intermolecular Forces In Compounds Such as MgO, KCl, H2O, CH4, CO2, SO2, HF, CH3OH, LiCl, CH2O, CO, and I2 15. The relationship between Boiling Point and Vapor Pressure 16. Straight Chained vs Branched Alkanes - Boiling Point and Intermolecular Forces - Surface Area 17. Ranking Boiling Point In Order of Increasing Strength for I2, Br2, F2, and Cl2 18. Polar and Nonpolar Organic Compounds - Polarity and Water Solubility 19. Ranking Boiling In Decreasing Order For HF, HCl, HBr, and HI 20. The effect of Molar Mass and Number of electrons on the Overall Intermolecular Force / LDF
Properties of Water | Hydrogen Bonding in Water | Biology | Biochemistry
 
12:37
Why is water essential for Life to exist on Earth? We are about 60% water - and there are some organisms that are as much as 90% water! What is so important about water? How does it support life? In this video, we discuss the special properties of water that make it the “Solvent of Life.” Chief among these properties is the extensive Hydrogen Bonding between water molecules that make water an extremely cohesive liquid (the molecules stick together). Due to the extensive hydrogen bonding, water has some emergent properties that impact life on Earth in many ways. These include: Cohesion Adhesion High surface tension High specific heat High heat of vaporization Ice Floats (Ice is less dense as a solid than liquid water) For each of these properties, we discuss how they impact living creatures on Earth. ❀❀❀❀❀❀❀❀❀❀ Our series on Biology is aimed at the first-year college level, including pre-med students. These videos should also be helpful for students in challenging high school biology courses. Perfect for preparing for the AP Biology exam or the Biology SAT. Also appropriate for advanced homeschoolers. You can also follow along if you are just curious, and would like to know more about this fascinating subject. Our current biology textbook recommendation is Campbell Biology from Pearson. 10th edition Amazon Link: http://amzn.to/2mahQTi 11th edition Amazon Link: http://amzn.to/2m7xU6w Shop Amazon Used Textbooks - Save up to 90% http://amzn.to/2pllk4B For lighter reading, we recommend: I Contain Multitudes: The Microbes Within Us and a Grander View of Life by Ed Yong http://amzn.to/2pLOddQ Lab Girl by Hope Jahren http://amzn.to/2oMolPg ❀❀❀❀❀❀❀❀❀❀ This video was made possible by the generous donations of our Patrons on Patreon! We dedicate this video to our VIP Patron, Tracy Karin Prell. Tracy is an amazing advocate for science communication. Thank you so much, Tracy! ❀❀❀❀❀❀❀❀❀❀ Please Subscribe so you'll hear about our newest videos! http://bit.ly/1ixuu9W If you found this video helpful, please give it a "thumbs up" and share it with your friends! If you'd like to support more great educational videos from Socratica, please consider becoming our Patron on Patreon! https://www.patreon.com/socratica ❀❀❀❀❀❀❀❀❀❀ Directed by Michael Harrison Written and Produced by Kimberly Hatch Harrison About our instructor: Kimberly Hatch Harrison received degrees in Biology and English Literature from Caltech before working in pharmaceuticals research, developing drugs for autoimmune disorders. She then continued her studies in Molecular Biology (focusing on Immunology and Neurobiology) at Princeton University, where she began teaching as a graduate student. Her success in teaching convinced her to leave the glamorous world of biology research and turn to teaching full-time, accepting a position at an exclusive prep school, where she taught biology and chemistry for eight years. She is now the head writer and producer of Socratica Studios. ❀❀❀❀❀❀❀❀❀❀ Creative Commons Picture Credits Basilisk running on water https://en.wikipedia.org/wiki/File:Basiliscus_basiliscus_running_on_water_-_pone.0037300.s001.ogv Author: Minetti et al. xylem http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0089934 Author: Boutilier et al 2014 PLOS Meniscus http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0050320 Author: Jingmin et al 2012 PLOS Little girl drinking https://pixabay.com/en/girl-thirsty-drink-fountain-water-2241750/ Author: brisch27 Army scout drinking https://pixabay.com/en/girl-scout-army-thirsty-sensuality-932421/ Author: AdinaVoicu Water drop Macro View http://www.publicdomainpictures.net/view-image.php?image=173836&picture=water-drop-macro-view Author: JeanBeauford Woman in the Ocean http://www.publicdomainpictures.net/view-image.php?image=172525&picture=woman-in-the-ocean Author: JeanBeauford Water on fabric https://en.wikipedia.org/wiki/File:Water_droplet_lying_on_a_damask.jpg Author: Petar Milosevic Water strider https://en.wikipedia.org/wiki/File:WaterstriderEnWiki.jpg Author: PD Polar bear on ice https://en.wikipedia.org/wiki/File:Polar_Bear_AdF.jpg Author: Arturo de Frias Marques Penguins on ice https://en.wikipedia.org/wiki/File:Pygoscelis_antarctica_trying_to_get_to_iceberg.wmv.ogv Author: Brocken Inaglory Cells (colourized) https://pixabay.com/en/white-blood-cell-cell-blood-cell-543471 Author: skeeze Hydrogen bonds in water https://en.wikipedia.org/wiki/File:3D_model_hydrogen_bonds_in_water.svg Author: Qwerter Water strider footage https://en.wikipedia.org/wiki/File:Vesimittareita.ogv Author: Uusijani roadrunner https://en.wikipedia.org/wiki/File:The_Greater_Roadrunner_Walking.jpg Author: Jessie Eastland Partially frozen pond http://www.publicdomainpictures.net/view-image.php?image=15079&picture=partially-frozen-pond Author: David Wagner
Views: 14641 Socratica
Identifying Hydrogen Bond Donors & Acceptors
 
05:36
Practice identifying organic molecules as hydrogen bond donors and/or acceptors.
Views: 49037 Michael Evans
Base Pairing and Hydrogen Bonding in NAs
 
06:22
This webcast describes the hydrogen bonding that holds individual strands of DNA and RNA together. In essence, we'll provide a chemical explanation for "G goes with C; A goes with T."
Views: 10931 Michael Evans
What amino acids can form hydrogen bonds
 
01:58
What amino acids can form hydrogen bonds - Find out more explanation for : 'What amino acids can form hydrogen bonds' only from this channel. Information Source: google
Views: 32 Arif Hidayat
Don't Make this Mistake with Hydrogen Bonding!
 
03:10
To see all my Chemistry videos, check out http://socratic.org/chemistry Here, I talk about the BIGGEST, most COMMON mistake people make with Hydrogen bonding. Watch this video so you never make this mistake!
Views: 34037 Tyler DeWitt
What are the Factors affecting Strength of Hydrogen Bond - H2ChemHacks
 
02:24
Hydrogen Bonds are found between simple molecules that contain either H-F, H-O or H-N bonds. Two factors affect the effectiveness of Hydrogen bonds and hence the boiling point of the molecule. The first factor is extensiveness of the Hydrogen bond, or the average number of Hydrogen bonds each molecule can form. If a molecule can form more Hydrogen bonds, then during boiling more Hydrogen bonds need to be broken which results in a higher boiling point. The second factor is the polarity of the H-F, H-O and H-N bond. In H-F bond is the most polar hence the hydrogen bond that results from this is the strongest, while H-N bond is the least polar which results in the weakest hydrogen bond. To learn more about each of these factors and when to consider them, watch this video tutorial now! Topic - Chemical Bonding, Physical Chemistry, JC, H2, A Level Chemistry, Singapore Found this video useful? Please LIKE this video and SHARE it with your friends. SUBSCRIBE to my YouTube Channel for new A Level H2 Chemistry video lessons every week! Any feedback, comments or questions to clarify? Suggestions for new video lessons? Drop them in the COMMENTS Section, I would love to hear from you! Do you know you can learn Chemistry Concepts under a minute? Follow me on Instagram for my weekly one-minute video lessons at https://www.instagram.com/chemistryguru/ I am also conducting JC H2 Chemistry classes at Bishan Central, Singapore. With my years of experience tutoring hundreds of JC students since 2010, I am confident that I can make H2 Chemistry Simpler for you too! For more information please visit https://chemistryguru.com.sg/ -~-~~-~~~-~~-~- Please watch my latest video: "Electronic Configuration for First 30 Elements" https://www.youtube.com/watch?v=EmPtAQnlTd4 -~-~~-~~~-~~-~-
Polar Bonds and Hydrogen Bonds
 
02:38
Simple explanation of polar covalent bonds and hydrogen bonds. Find more free tutorials, videos and readings for the science classroom at ricochetscience.com
Views: 55114 RicochetScience
Types of Hydrogen Bonds | Intermolecular and Intramolecular Bonding
 
03:52
There are two different types of hydrogen bonds. They are Intermolecular bonding and Intramolecular bonding. i) Intermolecular hydrogen bonding. This type of bond is formed between the two molecules of the same or different compounds. Some examples of the compounds exhibiting intermolecular hydrogen bonds are : Hydrogen fluoride and water. 1. Hydrogen fluoride, H F. In the solid state, hydrogen fluoride consists of long zig-zag chains of molecules associated by hydrogen bonds as shown in the figure. Therefore, hydrogen fluoride is represented as HFN. 2. Water In water molecule, the electronegative oxygen atom forms two polar covalent bonds with two hydrogen atoms. The oxygen atom due to its higher electronegativity acquires partial negative charge and the two hydrogen atoms acquire partial positive charge. The negatively charged oxygen forms two hydrogen bonds with two positively charged hydrogen atoms of two neighbouring molecules. Each oxygen atom is tetrahedrally surrounded by four hydrogen atoms as shown in visual. Hydrogen bonding in water results in a hydrogen bridge (HOH) network extending in three dimensions and the associated water molecule may be expressed as H Two O N. ii) Intramolecular hydrogen bonding. This type of bond is formed between hydrogen atom and Nitrogen, Oxygen or Flurine atom of the same molecule. This type of hydrogen bonding is commonly called chelation and is more frequently found in organic compounds. Intramolecular hydrogen bonding is possible when a six or five membered rings can be formed. Importance of H-bonding i) Life would have been impossible without liquid water which is the result of intermolecular H-bonding in it. ii) Hydrogen bonding increase the rigidity and strength of wood fibres and thus makes it an article of great utility to meet requirements of housing, furniture, etc. iii) The cotton, silk or synthetic fibres also own their rigidity and tensile strength to hydrogen bonding. iv) Most of our food materials such as carbohydrates and proteins also consist of hydrogen bonding. v) Hydrogen bonding also exists in various tissues, organs, skin, blood and bones.
Views: 1013 Easy Tips 4 Learner
Can ketones form hydrogen bonds with water
 
02:00
Can ketones form hydrogen bonds with water - Find out more explanation for : 'Can ketones form hydrogen bonds with water' only from this channel. Information Source: google
Views: 9 atunakai9a
Hydrogen bond Meaning
 
00:25
Video is created with the help of wikipedia, if you are looking for accurate, professional translation services and efficient localization you can use Universal Translation Services https://www.universal-translation-services.com?ap_id=ViragGNG Video shows what hydrogen bond means. A weak bond in which a hydrogen atom in one molecule is attracted to an electronegative atom (usually nitrogen or oxygen) in the same or different molecule.. Hydrogen bond Meaning. How to pronounce, definition audio dictionary. How to say hydrogen bond. Powered by MaryTTS, Wiktionary
Views: 1329 SDictionary
How many hydrogen bonds can form in ethanol
 
02:04
How many hydrogen bonds can form in ethanol - Find out more explanation for : 'How many hydrogen bonds can form in ethanol' only from this channel. Information Source: google
3.1 - Water Structure and Hydrogen Bonding
 
03:07
Basic chemical structure of a water molecule
Views: 169878 gmcd1985
Dipole Forces
 
07:32
017 - Dipole Forces In this video Paul Andersen describes the intermolecular forces associated with dipoles. A dipole is a molecule that has split charge. Dipole may form associations with other dipoles, induced dipoles or ions. An important type of dipole-dipole forces are hydrogen bonds. Music Attribution Title: String Theory Artist: Herman Jolly http://sunsetvalley.bandcamp.com/track/string-theory All of the images are licensed under creative commons and public domain licensing: "File:ADN Animation.gif." Wikipedia, the Free Encyclopedia. Accessed August 9, 2013. http://en.wikipedia.org/wiki/File:ADN_animation.gif. "File:GC DNA Base Pair.svg." Wikipedia, the Free Encyclopedia. Accessed August 9, 2013. http://en.wikipedia.org/wiki/File:GC_DNA_base_pair.svg. "File:Hydrogen-chloride-3D-vdW.png." Wikipedia, the Free Encyclopedia. Accessed August 9, 2013. http://en.wikipedia.org/wiki/File:Hydrogen-chloride-3D-vdW.png. "File:NaCl.png." Wikipedia, the Free Encyclopedia. Accessed August 9, 2013. https://en.wikipedia.org/wiki/File:NaCl.png. "File:Water Molecule 3D.svg." Wikipedia, the Free Encyclopedia. Accessed August 9, 2013. http://en.wikipedia.org/wiki/File:Water_molecule_3D.svg.
Views: 306387 Bozeman Science
Can alcohol form hydrogen bonds with water
 
01:58
Can alcohol form hydrogen bonds with water - Find out more explanation for : 'Can alcohol form hydrogen bonds with water' only from this channel. Information Source: google
Views: 8 WikiAudio10
Chemical Bonding Introduction: Hydrogen Molecule, Covalent Bond & Noble Gases
 
07:21
Chemical bonding introduction video shows how covalent bond means 2 hydrogen atoms can stick together to form a hydrogen molecule, H2. The video also explains why helium cannot form bonds and hence is called a noble gas. Subscribe to watch more online chemistry courses & science videos: http://www.youtube.com/channel/UCiX8pAYWBppIbtUZTfGnRJw?sub_confirmation=1 About Atomic School: Atomic School supports the teaching of Atomic Theory to primary school & science students . We provide lesson plans, hands-on classroom resources, demonstration equipment, quizzes and a Teacher's Manual to primary school teachers. Animated videos that clearly explain the scientific ideas supports learning by both teachers and students. As a teacher, you don't have to look anywhere else to implement this program. Our work has been verified by science education researchers at the University of Southern Queensland, Dr Jenny Donovan and Dr Carole Haeusler, who confirm that primary students are capable of learning much more complex scientific concepts than previously thought, and crucially, that they love it. Students run to class! The program has been trialed in Australian schools as well as schools in the Philippines, Iran and India. It is conducted as holiday workshops at the Australian Nuclear Science and Technology Organisation, the Queensland Museum as well as the World Science Festival. It has attracted wide media interest, including TV, radio and print, and the research data has been presented at prestigious American Education Research Association and Australian Science Education Research Association conferences. Atomic Theory underlies all the other sciences- genetics, electronics, nanotechnology, engineering and astronomy- so an early understanding will set them up for a more successful learning sequence for all their science subjects, and support their mastery of mathematics as well. We also have extension programs that cover Biology, Physics and Astronomy to an equal depth. About Ian Stuart (Email: [email protected]): The founder of Atomic School, Ian Stuart, taught Chemistry and Physics for 25 years at senior levels before he realized that his 8-year old son, Tom, could understand Atomic Theory at a much deeper level than he expected. After visiting Tom's class at school, he discovered that his peers could also grasp the abstract scientific concepts, as well as apply it usefully to the real world. Ian then developed a program to teach the advanced concepts of high school Chemistry, Physics and Biology to students 10 years younger than they normally would. He found that this engaged their interest in modern science early, and sustained it through to high school and beyond. It also sets them up for future success in their academic and career paths. Ian has a Bachelor's Degree in Chemistry from the University of Queensland and a Master's degree in Electrochemistry from the University of Melbourne. Connect with Atomic School on social media: http://facebook.com/AtomicSchool http://twitter.com/AtomicSchools http://instagram.com/AtomicSchools Video transcript: Let's do a thought experiment. Imagine a box filled with hydrogen atoms. Like billiard balls on a pool table, atoms actually move, and they do it in straight lines until they hit something … like another hydrogen atom. Oh! See that? They stuck together. They’re not separate hydrogen atoms any more, but a pair of hydrogen atoms moving together. There goes another pair. 4.1 When atoms join up like this, scientists call it a molecule. And they call the join between them a chemical bond. Here comes another hydrogen atom crashing into the hydrogen molecule. But this time it doesn’t stick. Instead it just bounces off. Hydrogen atoms bond once, and that’s it. They’re just like that. Pretty quickly all the hydrogen atoms will collide and pair off into molecules. They will keep hitting each other, but they'll just bounce off. Scientists like to have a shorthand way of writing this molecule thingi. Here’s one way to show it, with the hydrogen symbols joined by a stick to show the chemical bond between the atoms. Another way is to write H2, with the little 2 after the H and a bit lower. A number written this way is called a subscript. What do you think the 2 stands for? It counts the number of hydrogen atoms in the molecule. Easy, heh! So when we have a balloon filled with hydrogen gas, it really contains trillions of trillions of H2 molecules. Let's do another thought experiment. We'll go back to our box filled with hydrogen atoms, but this time put an oxygen atom in there too. When a hydrogen atom crashes into an oxygen atom, they stick together. But wait, when another hydrogen atom hits, it also sticks to the oxygen. What about a third hydrogen atom? No, that’s if for oxygen. It can only make 2 bonds and then it’s done.
Views: 119962 AtomicSchool
How Does Water Bond - Covalent Bonds | Chemistry for All | FuseSchool
 
02:40
Learn the basics about the covalent bonding of water, when learning about covalent bonding within properties of matter. Water is made from one oxygen atom and two hydrogens. The oxygen has 6 electrons in its outer shell, but it really wants to have 8 to have a full shell. The hydrogens have one outer shell electron, but want to have two. The atoms share their electrons, forming covalent bonds. So all three atoms have full outer shells, and create a water molecule. Water has two covalent bonds. In water, the bonding electrons spend most of their time nearer the oxygen atom, because it is more ELECTRONEGATIVE. This means that it is electron withdrawing. As the negatively charged electrons are nearer the oxygen atom, the oxygen atom becomes a little bit negative itself, while the hydrogens become a little positive. This is called delta positive and delta negative. Water doesn’t just have any old covalent bonds; it has what we call POLAR COVALENT bonds and is a POLAR molecule. This is really important as it affects how water behaves and reacts with other elements. SUBSCRIBE to the Fuse School YouTube channel for many more educational videos. Our teachers and animators come together to make fun & easy-to-understand videos in Chemistry, Biology, Physics, Maths & ICT. JOIN our platform at www.fuseschool.org This video is part of 'Chemistry for All' - a Chemistry Education project by our Charity Fuse Foundation - the organisation behind The Fuse School. These videos can be used in a flipped classroom model or as a revision aid. Find our other Chemistry videos here: https://www.youtube.com/playlist?list=PLW0gavSzhMlReKGMVfUt6YuNQsO0bqSMV Twitter: https://twitter.com/fuseSchool Access a deeper Learning Experience in the Fuse School platform and app: www.fuseschool.org Follow us: http://www.youtube.com/fuseschool Friend us: http://www.facebook.com/fuseschool This Open Educational Resource is free of charge, under a Creative Commons License: Attribution-NonCommercial CC BY-NC ( View License Deed: http://creativecommons.org/licenses/by-nc/4.0/ ). You are allowed to download the video for nonprofit, educational use. If you would like to modify the video, please contact us: [email protected]
4.4 What are Hydrogen Bonds ? [SL IB Chemistry]
 
07:33
When hydrogen is covalently bonded to either F,O or N then the molecule has the ability to make hydrogen bonds. These are almost always Intermolecular forces in IB Chemistry. Hydrogen bonds are the strongest intermolecular force in IB Chem. Dr Atkinson converted to renewables soon after. final music by: Katia Galkin https://soundcloud.com/russianhush
Views: 10808 Richard Thornley
Polarity of Water and Hydrogen Bonds (2016) IB Biology
 
05:16
2.2 Water: Polarity of Water and Hydrogen Bonds Understanding that: - Hydrogen bonding and bipolarity explain the cohesive, adhesive, thermal and solvent properties of water - Structure of water causes it to be polar and thus cause hydrogen bonds to form in between them
Views: 8047 Alex Lee
20-Second Story about Hydrogen Bonding
 
01:41
This is a simple language explanation of hydrogen bonding
Views: 226385 EtuSchule
3.3.4 Explain how a DNA double helix is formed
 
01:19
3.3.4 Explain how a DNA double helix is formed using complementary base pairing and hydrogen bonds. Nitrogenous bases from two single strands are joined using the complimentary base pairing rule. Adenine with Thymine (using two hydrogen bonds) and Cytosine with Guanine (using three hydrogen bonds). A DNA double helix is formed firstly when a nucleotide joins with another nucleotide by a covalent bond forming a single strand. The nitrogenous bases from this single strand then bond to nitrogenous bases from another single strand (by the complimentary base pairing rule and using hydrogen bonds as stated above) in order to form a double helix. Note that the two strand are antiparallel to each other (running in opposite directions as indicated by the arrows).
Views: 39688 Stephanie Castle
First Year Chemistry, Ch 4 - Application Compounds Hydrogen Bonding - 11th Class Chemistry
 
09:13
In this online lecture, Sir Khurram Shehzad explains 1st year Chemistry book 1 Chapter 4 Liquids & Solids .The topic being discussed is Topic 4.1 Intermolecular Forces. punjab text book board/Sindh text book board/KPK text book board inter part 1 Chemistry book 1 lecture is conducted in Urdu/hindi/English. This lecture for Pre Medical / Engineering 11th class for Chemistry chapter 4 is created for all students who want to prepare this topic in detail. For more videos of Khurram Shehzad visit https://www.ilmkidunya.com/study/11th-class-chemistry/liquids-and-solids.aspx If you have any questions about this lecture on Mathematics inter part 1 ch. 4, you can go to https://www.instutor.com/11th-class/chemistry/liquids-and-solids
Views: 3350 ilmkidunya
Structure Of Water Molecule - Chemistry Of Water
 
02:13
In this video we discuss the structure of water. We cover how and why is water a solvent to other substances, and how the ability of water to act as a solvent makes it a great transporting agent in the body. Transcript and notes The structure of water The chemistry of water Water is an inorganic molecule that is the most important compound in the body. In fact, a normal adult’s body weight is made up of 50% or more of water. A molecule of water has one oxygen atom covalently bonded to 2 hydrogen atoms. Covalent bonds being chemical bonds that are formed by the sharing of one or more pairs of electrons by the outer energy levels or shells of two atoms. Water molecules are also polar molecules, even though the oxygen atom shares electrons with the hydrogen atoms, the electrons are not shared equally within the molecule. This gives the oxygen side of the molecule two partial negative charges, and each of the hydrogen’s a slightly positive charge. This means that each water molecule can form up to 4 hydrogen bonds with adjacent water molecules. Hydrogen bonds are the result of an unequal charge distribution on a molecule, these molecules are said to be polar. This property allows water to act as a very effective solvent, which means it is able to dissolve or break apart many other substances. Substances that do dissolve or break apart in water are called hydrophilic, which means water loving. Non polar substances that do not dissolve in water are called hydrophobic, or water fearing. Some substances such as glucose molecules dissolve and remain intact in water, as water molecules surround the substance forming a hydration shell around the molecule. Some substances dissolve and dissociate or break apart in water. Table salt or NaCl, when added to water will dissociate to form positive Na ions and negative Cl ions, with hydration shells forming around each ion. This property of water allows it to function as a transporter, as water based fluids such as blood transport substances dissolved in water throughout the body. Non polar hydrophobic substances such as fats and cholesterol that do not bond with water must be enclosed within a transport protein molecule to be transported within blood. Other notes Water also absorbs and gives up heat slowly, which means it retains a relatively constant temperature. This property plays an important role in maintaining body temperature. This can be seen during exercise, as water or sweat is evaporated from the surface of the skin. Water also functions as a lubricant moistening food making it easier to swallow and decreasing friction as is the case with synovial fluid located within certain joints. Water acts as a cushion in some areas of the body, as the fluid surrounding the brain and spinal cord are water based. Water helps keep tissues moist, such as the eyes, nose and throat, enabling them to function properly as well as helping keep skin from drying and cracking. And water helps to excrete wastes in the body, as some unwanted substances are eliminated through urine.
Views: 7077 Whats Up Dude
Hydrogen bonding: Its type and consequences Ft. Pooja Sharma
 
05:22
U can like my Facebook page ie. Vipin Sharma Biology Blogs for more information regarding every national level competitive exam in which biology is a part . Like this video share it with your frnds n subscribe to my channel if u r new. Thanq so much for supporting me guys 👍 😊. Biopedia page: http://m.facebook.com/biopedia.co.in/?notif_t=feedback_reaction_generic&notif_id=1530624004172192&ref=m_notif https://unacademy.com/user/vks199711-4457 Open this link and click on "follow" button as well as "login" to support me on Unacademy. Do share with all your friends. https://mbasic.facebook.com/Vipin-Sharma-Biology-Blogs-588472744670315/?__xt__=11.%7B%22event%22%3A%22visit_page_tab%22%2C%22user_id%22%3A100003119064758%2C%22page_id%22%3A588472744670315%7D
The most useful dye for those fabrics which can form hydrogen bonds is
 
02:51
A..mordant dyes B..vat dyes C..acid dyes D..direct dyes
Views: 6 MyProgressCard
Physical Properties of Alcohol: Hydrogen Bonding, Solubility and Boiling Point
 
14:02
http://leah4sci.com/alcohol Presents: Physical Properties of Alcohol including Hydrogen Bonding, Solubility and Boiling Point Need help with Orgo? Download my free guide ’10 Secrets to Acing Organic Chemistry’ HERE: http://leah4sci.com/orgo-ebook/ In this video: [0:13] Understanding the Alcohol Functional Group [2:17] Hydrogen Bonds as Strongest IMF [3:35] Difference Between Soluble & Miscible [7:14] Solubility Rules for Molecules in Water [8:12] Effects of Boiling Point on IMF [11:58] Different Boiling Point of Butanol Alcohols have very unique hydrogen interactions. This video explains by looking at the intermolecular forces behind hydrogen bonding, alcohol's solubility in water, miscibility, the structure's effects on boiling point trends, and much more. Links & Resources Mentioned In This Video: Intro to Alcohol Reactions: http://leah4sci.com/introduction-to-alcohol-reactions/ Catch the entire Alcohol Video Series along with the Alcohol Practice Quiz and Cheat Sheet on my website at http://leah4sci.com/alcohol For more in-depth review on Alcohols including practice problems and explanations, come join my online membership site the organic chemistry study hall: http://leah4sci.com/join For private online tutoring visit my website: http://leah4sci.com/organic-chemistry Finally, for questions and comments, find me on social media here: Facebook: https://www.facebook.com/Leah4Sci Twitter: https://twitter.com/Leah4Sci Instagram: https://www.instagram.com/leah4sci/ Google+ : https://plus.google.com/u/0/+LeahFisch Pinterest: http://www.pinterest.com/leah4sci/
Views: 8113 Leah4sci
What is HYDROGEN BOND? What does HYDROGEN BOND mean? HYDROGEN BOND meaning & explanation
 
02:20
What is HYDROGEN BOND? What does HYDROGEN BOND mean? HYDROGEN BOND meaning - HYDROGEN BOND definition - HYDROGEN BOND explanation. Source: Wikipedia.org article, adapted under https://creativecommons.org/licenses/by-sa/3.0/ license. A hydrogen bond is the electrostatic attraction between polar groups that occurs when a hydrogen (H) atom bound to a highly electronegative atom such as nitrogen (N), oxygen (O) or fluorine (F) experiences attraction to some other nearby highly electronegative atom. These hydrogen-bond attractions can occur between molecules (intermolecular) or within different parts of a single molecule (intramolecular). Depending on geometry and environmental conditions, the hydrogen bond may be worth between 5 and 30 kJ/mole in thermodynamic terms. This makes it stronger than a van der Waals interaction, but weaker than covalent or ionic bonds. This type of bond can occur in inorganic molecules such as water and in organic molecules like DNA and proteins. Intermolecular hydrogen bonding is responsible for the high boiling point of water (100 °C) compared to the other group 16 hydrides that have no hydrogen bonds. Intramolecular hydrogen bonding is partly responsible for the secondary and tertiary structures of proteins and nucleic acids. It also plays an important role in the structure of polymers, both synthetic and natural. In 2011, an IUPAC Task Group recommended a modern evidence-based definition of hydrogen bonding, which was published in the IUPAC journal Pure and Applied Chemistry. This definition specifies: The hydrogen bond is an attractive interaction between a hydrogen atom from a molecule or a molecular fragment X–H in which X is more electronegative than H, and an atom or a group of atoms in the same or a different molecule, in which there is evidence of bond formation. An accompanying detailed technical report provides the rationale behind the new definition.
Views: 5940 The Audiopedia
hydrogen bonding
 
01:04
translation: Hydrogen bonding connects two or more molecules together hence it being an intermolecular force. Hydrogen bonding is a special form of Dipole-Dipole forces that is specifically bonded between a hydrogen atom and either a Nitrogen, Fluorine, or Oxygen atom. Out of the three intermolecular forces, hydrogen bonding is the strongest. This is caused by hydrogen being highly partially positive and thus having a stronger attraction to a partially negative end of another molecule. This is shown in the top left corner of the slide; An Oxygen of a H2O molecule is partially negative and the partially positive end of a Oxygen on another H2O molecule is attracted and forms a hydrogen bond. The strength of the hydrogen bond leads molecules to be able to have higher boiling points than the other intermolecular forces; this is due to the fact that it is harder to break apart molecules that are formed by hydrogen bonds. Hydrogen bonding is still no match for the strength of intramolecular bonds. Hydrogen bonds are 1/10th the strength of covalent bonds.
Views: 11 Huddy Abel
Covalent Bonding of Hydrogen, Oxygen & Nitrogen | Chemistry for All | The Fuse School
 
03:25
Learn the basics about the covalent bonding of hydrogen, oxygen and nitrogen as a part of the overall topic of properties of matter. The noble gas structure and covalent bonding is also discussed. SUBSCRIBE to the Fuse School YouTube channel for many more educational videos. Our teachers and animators come together to make fun & easy-to-understand videos in Chemistry, Biology, Physics, Maths & ICT. JOIN our platform at www.fuseschool.org This video is part of 'Chemistry for All' - a Chemistry Education project by our Charity Fuse Foundation - the organisation behind The Fuse School. These videos can be used in a flipped classroom model or as a revision aid. Find our other Chemistry videos here: https://www.youtube.com/playlist?list=PLW0gavSzhMlReKGMVfUt6YuNQsO0bqSMV Twitter: https://twitter.com/fuseSchool Access a deeper Learning Experience in the Fuse School platform and app: www.fuseschool.org Follow us: http://www.youtube.com/fuseschool Friend us: http://www.facebook.com/fuseschool This Open Educational Resource is free of charge, under a Creative Commons License: Attribution-NonCommercial CC BY-NC ( View License Deed: http://creativecommons.org/licenses/by-nc/4.0/ ). You are allowed to download the video for nonprofit, educational use. If you would like to modify the video, please contact us: [email protected]
Double and Triple Bonds
 
13:08
This video shows chemical bonds inside human body respiration & breathing. Oxygen atoms can form double bonds, and nitrogen atoms can form triple bonds to make diatomic gaseous molecules. But carbon atoms can't form a quadruple bonds, instead bonding to make a network solid. The role of O2, N2 and CO2 in breathing and respiration is explored, and more complex molecules are introduced. Subscribe to watch more online chemistry courses & science videos: http://www.youtube.com/channel/UCiX8pAYWBppIbtUZTfGnRJw?sub_confirmation=1 About Atomic School: Atomic School supports the teaching of Atomic Theory to primary school & science students . We provide lesson plans, hands-on classroom resources, demonstration equipment, quizzes and a Teacher's Manual to primary school teachers. Animated videos that clearly explain the scientific ideas supports learning by both teachers and students. As a teacher, you don't have to look anywhere else to implement this program. Our work has been verified by science education researchers at the University of Southern Queensland, Dr Jenny Donovan and Dr Carole Haeusler, who confirm that primary students are capable of learning much more complex scientific concepts than previously thought, and crucially, that they love it. Students run to class! The program has been trialed in Australian schools as well as schools in the Philippines, Iran and India. It is conducted as holiday workshops at the Australian Nuclear Science and Technology Organisation, the Queensland Museum as well as the World Science Festival. It has attracted wide media interest, including TV, radio and print, and the research data has been presented at prestigious American Education Research Association and Australian Science Education Research Association conferences. Atomic Theory underlies all the other sciences- genetics, electronics, nanotechnology, engineering and astronomy- so an early understanding will set them up for a more successful learning sequence for all their science subjects, and support their mastery of mathematics as well. We also have extension programs that cover Biology, Physics and Astronomy to an equal depth. About Ian Stuart (Email: [email protected]): The founder of Atomic School, Ian Stuart, taught Chemistry and Physics for 25 years at senior levels before he realized that his 8-year old son, Tom, could understand Atomic Theory at a much deeper level than he expected. After visiting Tom's class at school, he discovered that his peers could also grasp the abstract scientific concepts, as well as apply it usefully to the real world. Ian then developed a program to teach the advanced concepts of high school Chemistry, Physics and Biology to students 10 years younger than they normally would. He found that this engaged their interest in modern science early, and sustained it through to high school and beyond. It also sets them up for future success in their academic and career paths. Ian has a Bachelor's Degree in Chemistry from the University of Queensland and a Master's degree in Electrochemistry from the University of Melbourne. Connect with Atomic School on social media: http://facebook.com/AtomicSchool http://twitter.com/AtomicSchools http://instagram.com/AtomicSchools Video transcript: The thought experiments from our last video showed that hydrogen atoms can make only one bond, oxygen atoms can make 2, nitrogen three and carbon 4 bonds with other atoms. This number of bonds that an atom can make is called its valency. Hydrogen has a valency of 1, oxygen 2, nitrogen 3 and carbon 4. In our next thought experiment, we'll put lots of oxygen atoms in a box. But no hydrogen atoms this time. Like hydrogen, oxygen atoms stick together in pairs. 3.1 When another oxygen atom hits this pair, it doesn’t stick. HC? How come? Don’t oxygen atoms like to bond to two other atoms? If it bond with hydrogen, which has only one bond, it will need two of them, and the new molecule will be H2O, water. But when it bonds with another oxygen, it has one bond left over. The other oxygen does too. If hydrogen atoms were available they could join with these bonds to make a complete molecule. But if there aren't any spare hydrogen atoms floating about, can you see another solution? The oxygens can bond to each other a second time. The 2 oxygens then form a double bond between them. Now both oxygen atoms are using both of their bonds, and are satisfying their valency of 2. The stick diagram for this molecule shows the 2 oxygen atoms joined by the double bond. The chemical formula for this molecule is O2. The 2 is showing us that there are 2 oxygen atoms in the molecule, not that there are 2 bonds between the atoms. That's just a coincidence. Oxygen is a colourless gas, and about 20% of the air is made of O2 molecules. When we breathe in, our bodies can absorb them into our blood steam and keep us alive.
Views: 67314 AtomicSchool
Hydrogen Covalent Bond (Loop)  3d Blender Animation
 
00:45
MORE INFORMATION---Av hydrogen bond is the attractive interaction of a hydrogen atom with an electronegative atom, such as nitrogen, oxygen or fluorine, that comes from another molecule or chemical group. The hydrogen must be covalently bonded to another electronegative atom to create the bond. These bonds can occur between molecules (intermolecularly), or within different parts of a single molecule (intramolecularly).[2] The hydrogen bond (5 to 30 kJ/mole) is stronger than a van der Waals interaction, but weaker than covalent or ionic bonds. This type of bond occurs in both inorganic molecules such as water and organic molecules such as DNA.Intermolecular hydrogen bonding is responsible for the high boiling point of water (100 °C) compared to the other group 16 hydrides that have no hydrogen bonds. Intramolecular hydrogen bonding is partly responsible for the secondary, tertiary, and quaternary structures of proteins and nucleic acids. It also plays an important role in the structure of polymers, both synthetic and natural. A hydrogen atom attached to a relatively electronegative atom is a hydrogen bond donor.[5] This electronegative atom is usually fluorine, oxygen, or nitrogen. An electronegative atom such as fluorine, oxygen, or nitrogen is a hydrogen bond acceptor, regardless of whether it is bonded to a hydrogen atom or not. An example of a hydrogen bond donor is ethanol, which has a hydrogen bonded to oxygen; an example of a hydrogen bond acceptor which does not have a hydrogen atom bonded to it is the oxygen atom on diethyl ether.xamples of hydrogen bond donating (donors) and hydrogen bond accepting groups (acceptors) Carboxylic acids often form dimers in vapor phase. A hydrogen attached to carbon can also participate in hydrogen bonding when the carbon atom is bound to electronegative atoms, as is the case in chloroform, CHCl3. The electronegative atom attracts the electron cloud from around the hydrogen nucleus and, by decentralizing the cloud, leaves the atom with a positive partial charge. Because of the small size of hydrogen relative to other atoms and molecules, the resulting charge, though only partial, represents a large charge density. A hydrogen bond results when this strong positive charge density attracts a lone pair of electrons on another heteroatom, which becomes the hydrogen-bond Acceptor.The hydrogen bond is often described as an electrostatic dipole-dipole interaction. However, it also has some features of covalent bonding: it is directional and strong, produces interatomic distances shorter than sum of van der Waals radii, and usually involves a limited number of interaction partners, which can be interpreted as a type of valence. These covalent features are more substantial when acceptors bind hydrogens from more electronegative donors. The partially covalent nature of a hydrogen bond raises the following questions: "To which molecule or atom does the hydrogen nucleus belong?" and "Which should be labeled 'donor' and which 'acceptor'?" Usually, this is simple to determine on the basis of interatomic distances in the X−H...Y system: X−H distance is typically ≈110 pm, whereas H...Y distance is ≈160 to 200 pm. Liquids that display hydrogen bonding are called associated liquids.
Views: 20597 Animation Devastation
Hydrogen Bonding Song
 
04:29
Also known as, "Pretty Boy Bond" . (bonding, bonding, bonding) [Chorus:] This right here is my bond (bond, bond) All the electrons* are on my bond (bond, bond) Everybody pay attention (yeah) This right here is my hydrogen bond (ayeee) Hydrogen bond (ayye) [x4] Electrons form octets when I hydrogen bond, Ionic or covalent its a hydrogen bond Watch my hydrogen bond (ayye) [x2] Electrons form octets when I hydrogen bond, Ionic or covalent its a hydrogen bond Bonding! [Soulja Boy:] Get out the way Hydrogen's on the screen Me and flourine we'll bond ionic-ly. You see me everywhere since im in H2O (water) Theres hydrogen in water, and i think you should know (woosh) I'm lookin' for a single bond; two-electron parr (pair) A strong attractive force holds them togeth-are (the Sun) Learning about bonding will take you very far Chorus comes up in 5, 4, 3, 2, 1 [Chorus] [Soulja Boy:] Hydrogen bonding with water is pretty nice (woo) Two hydrogens one oxygen makes up all my ice (burr) For hydrogen gas, you'll need a subscript two (twice?) Its in the Magnificent Seven, just ask Mr. Hsu (swag) You might think that we, we are pretty smart (we are) Hydrogen and I; we always toppin' charts. (clever) I hope you've learned about, how molecules bond (yeah) Oh, and hydrogen atoms can never ever ever double bond! [Chorus]
Views: 13631 shanemckeon1
Properties of Water
 
06:51
Explore some properties of water with the Amoeba Sisters! It's all about those hydrogen bonds. Video has handout: http://www.amoebasisters.com/handouts Terms discussed include adhesion, cohesion, surface tension, specific heat - all made possible by those amazing hydrogen bonds. Support us on Patreon! http://www.patreon.com/amoebasisters Our FREE resources: GIFs: http://www.amoebasisters.com/gifs.html Handouts: http://www.amoebasisters.com/handouts.html Comics: http://www.amoebasisters.com/parameciumparlorcomics Connect with us! Website: http://www.AmoebaSisters.com Twitter: http://www.twitter.com/AmoebaSisters Facebook: http://www.facebook.com/AmoebaSisters Tumblr: http://www.amoebasisters.tumblr.com Pinterest: http://www.pinterest.com/AmoebaSister­s Instagram: https://www.instagram.com/amoebasistersofficial/ Visit our Redbubble store at http://www.amoebasisters.com/store.html The Amoeba Sisters videos demystify science with humor and relevance. The videos center on Pinky's certification and experience in teaching science at the high school level. Pinky's teacher certification is in grades 4-8 science and 8-12 composite science (encompassing biology, chemistry, and physics). Amoeba Sisters videos only cover concepts that Pinky is certified to teach, and they focus on her specialty: secondary life science. For more information about The Amoeba Sisters, visit: http://www.amoebasisters.com/about-us.html We cover the basics in biology concepts at the secondary level. If you are looking to discover more about biology and go into depth beyond these basics, our recommended reference is the FREE, peer reviewed, open source OpenStax biology textbook: https://openstax.org/details/books/biology *We mention that water makes up "3/4 of the Earth's surface" and we wish we had said "nearly" This number is going to be an estimate, but here is a source that puts it around 71%. https://water.usgs.gov/edu/earthhowmuch.html We take pride in our AWESOME community, and we welcome feedback and discussion. However, please remember that this is an education channel. See YouTube's community guidelines https://www.youtube.com/yt/policyandsafety/communityguidelines.html and YouTube's policy center https://support.google.com/youtube/topic/2676378?hl=en&ref_topic=6151248. We also reserve the right to remove comments with vulgar language. Music is this video is listed free to use/no attribution required from the YouTube audio library https://www.youtube.com/audiolibrary/music?feature=blog We have YouTube's community contributed subtitles feature on to allow translations for different languages. YouTube automatically credits the different language contributors below (unless the contributor had opted out of being credited). We are thankful for those that contribute different languages. If you have a concern about community contributed contributions, please contact us.
Views: 615786 Amoeba Sisters
√√ Attractive forces between molecules | Water | iitutor
 
12:44
https://www.iitutor.com/ Hydrogen bonding • The hydrogen bond is a special type of dipole-dipole force between molecules that have an H atom bound to a small, highly electronegative atom with lone pair electrons. N, O and F are those atoms that strongly withdraw electron density from H. As a result N-H, O-H and F-H bonds are very polar and H becomes partially positive. The partially positive H of one molecule is attracted to the partially negative lone pair on N, O or F of another molecule. This attraction is called hydrogen bond. • The small sizes of N, O or F are vital to H-bond The small sizes allow these atoms to be strongly electronegative and their bonded H to be highly positive The small sizes allow the lone pair on N, O or F to come closer to the H • Other electronegative elements such as chlorine, bromine and sulfur do not form hydrogen bonds. Although H-Cl, H-Br and H-S bonds are polar, the attractive force between the partially positive hydrogen atoms and the lone electron pairs on other chlorine, bromine and sulfur atoms is not as strong as that between H and N, O or F. The chlorine, bromine and sulfur atoms are much larger and the lone pair electrons are not as accessible to the partial positively charged hydrogen atoms. Summary of the essential requirements for hydrogen bonding • H atom bonded to strongly electronegative and small N, O or F so that H atom becomes partially positively charged. • Lone pair of electrons on a N, O or F of another molecule which can attract the partially positive H atom. Significance and features of H bonding • The strength of hydrogen bonds is in general about ten times those of dipole-¬dipole forces but about one-tenth those of ionic or covalent bonds. • Hydrogen bonds are extremely important in biological systems and play a critical role in determining the structure of proteins, For example, DNA molecule consists of two chains. Each is held together by strong covalent bonds, but millions of H bonds link one chain to the other to form a double helix. • Hydrogen bonding is important in many chemical systems. Boiling and melting points typically rise as molar mass increases, as we can see in the Group 4 hydrides, CH4 through SnH4. However, the first member in each series – NH3, H2O and HF- deviates enormously from this expectation. This is because H-bonds keep these molecules together and additional energy is required to break the H-bonds to separate these molecules to liquid state or gas state. H-bond and uniqueness of water • The presence of hydrogen bonding accounts for many of the unique properties of water. For example, the arrangement of water molecules in ice creates a very open structure which causes the density of ice to be less than that of liquid water. • When ice melts, the regular lattice breaks up and the water molecules can pack more closely to form a liquid of somewhat higher density. Without hydrogen bonding, ice would sink to the bottom of oceans and lakes, a process that in cold climates would cause the death of fish and other aquatic life.
Views: 631 iitutor.com
Water - Liquid Awesome: Crash Course Biology #2
 
11:17
Hank teaches us why water is one of the most fascinating and important substances in the universe. Follow SciShow on Twitter: http://www.twitter.com/scishow Like SciShow on Facebook: http://www.facebook.com/scishow Review: Re-watch = 00:00 Introduction = 00:42 Molecular structure & hydrogen bonds = 01:38 Cohesion & surface tension = 02:46 Adhesion = 03:31 Hydrophilic substances = 04:42 Hydrophobic substances = 05:14 Henry Cavendish = 05:49 Ice Density = 07:45 Heat Capacity = 09:10 Crash Course Biology is now available on DVD! http://dftba.com/product/1av/CrashCourse-Biology-The-Complete-Series-DVD-Set Citations: http://www.extension.umn.edu/distribution/youthdevelopment/components/0328-02.html http://www.uni.edu/~iowawet/H2OProperties.html http://www.hometrainingtools.com/properties-water-science-teaching-tip/a/1274/ http://science.howstuffworks.com/environmental/earth/geophysics/h2o7.htm http://www.robinsonlibrary.com/science/chemistry/biography/cavendish.htm http://chemistry.mtu.edu/~pcharles/SCIHISTORY/HenryCavendish.html http://www.nndb.com/people/030/000083778/ http://www.notablebiographies.com/Ca-Ch/Cavendish-Henry.html TAGS: water, hydrogen, oxygen, molecule, covalent bond, cohesion, adhesion, polarity, hydrogen bond, surface tension, capillary action, hydrophilic, hydrophobic, ionic bond, ion, universal solvent, henry cavendish, chemistry, specific gravity, density, heat capacity, evaporation, biology, crashcourse, crash course, hank green Support CrashCourse on Subbable: http://subbable.com/crashcourse
Views: 2934023 CrashCourse
Intermolecular Forces and Boiling Points
 
10:54
Why do different liquids boil at different temperatures? It has to do with how strongly the molecules interact with each other. Find out all the different ways, and how to use them to make predictions about matter! Subscribe: http://bit.ly/ProfDaveSubscribe [email protected] http://patreon.com/ProfessorDaveExplains http://professordaveexplains.com http://facebook.com/ProfessorDaveExpl... http://twitter.com/DaveExplains General Chemistry Tutorials: http://bit.ly/ProfDaveGenChem Organic Chemistry Tutorials: http://bit.ly/ProfDaveOrgChem Biochemistry Tutorials: http://bit.ly/ProfDaveBiochem Classical Physics Tutorials: http://bit.ly/ProfDavePhysics1 Modern Physics Tutorials: http://bit.ly/ProfDavePhysics2 Mathematics Tutorials: http://bit.ly/ProfDaveMaths Biology Tutorials: http://bit.ly/ProfDaveBio American History Tutorials: http://bit.ly/ProfDaveAmericanHistory
Views: 462538 Professor Dave Explains

Olow emu plains newsletter formats
Writing letter to judge uk
Pregnancy loss australia newsletter formats
International sales coordinator cover letter
Cleaning service bid cover letter