Home
Search results “Mining model algorithms”
Top 5 Algorithms used in Data Science | Data Science Tutorial | Data Mining Tutorial | Edureka
 
01:13:27
( Data Science Training - https://www.edureka.co/data-science ) This tutorial will give you an overview of the most common algorithms that are used in Data Science. Here, you will learn what activities Data Scientists do and you will learn how they use algorithms like Decision Tree, Random Forest, Association Rule Mining, Linear Regression and K-Means Clustering. To learn more about Data Science click here: http://goo.gl/9HsPlv The topics related to 'R', Machine learning and Hadoop and various other algorithms have been extensively covered in our course “Data Science”. For more information, Please write back to us at [email protected] or call us at IND: 9606058406 / US: 18338555775 (toll free). Instagram: https://www.instagram.com/edureka_learning/ Facebook: https://www.facebook.com/edurekaIN/ Twitter: https://twitter.com/edurekain LinkedIn: https://www.linkedin.com/company/edureka
Views: 101370 edureka!
Data Analysis:  Clustering and Classification (Lec. 1, part 1)
 
26:59
Supervised and unsupervised learning algorithms
Views: 62362 Nathan Kutz
EM algorithm: how it works
 
07:53
Full lecture: http://bit.ly/EM-alg Mixture models are a probabilistically-sound way to do soft clustering. We assume our data is sampled from K different sources (probability distributions). The expectation maximisation (EM) algorithm allows us to discover the parameters of these distributions, and figure out which point comes from each source at the same time.
Views: 167949 Victor Lavrenko
6 Types of Classification Algorithms
 
02:51
Here are some of the most commonly used classification algorithms -- Logistic Regression, Naïve Bayes, Stochastic Gradient Descent, K-Nearest Neighbours, Decision Tree, Random Forest and Support Vector Machine. https://analyticsindiamag.com/7-types-classification-algorithms/ -------------------------------------------------- Get in touch with us: Website: www.analyticsindiamag.com Contact: [email protected] Facebook: https://www.facebook.com/AnalyticsIndiaMagazine/ Twitter: http://www.twitter.com/analyticsindiam Linkedin: https://www.linkedin.com/company-beta/10283931/ Instagram: https://www.instagram.com/analyticsindiamagazine/
Extending Machine Learning Algorithms – AdaBoost Classifier | packtpub.com
 
05:40
This playlist/video has been uploaded for Marketing purposes and contains only selective videos. For the entire video course and code, visit [http://bit.ly/2BHOdgY]. Boosting is a general approach that can be applied to many statistical models. We will see the application of boosting in the context of decision trees. Boosting works in a sequential manner and does not involve bootstrap sampling. • Define the steps for AdaBoost classifier • Execute the R code for AdaBoost classifier For the latest Big Data and Business Intelligence tutorials, please visit http://bit.ly/1HCjJik Find us on Facebook -- http://www.facebook.com/Packtvideo Follow us on Twitter - http://www.twitter.com/packtvideo
Views: 19528 Packt Video
Decision Tree (CART) - Machine Learning Fun and Easy
 
08:46
Decision Tree (CART) - Machine Learning Fun and Easy ►FREE YOLO GIFT - http://augmentedstartups.info/yolofreegiftsp ►KERAS Course - https://www.udemy.com/machine-learning-fun-and-easy-using-python-and-keras/?couponCode=YOUTUBE_ML Decision tree is a type of supervised learning algorithm (having a pre-defined target variable) that is mostly used in classification problems. A tree has many analogies in real life, and turns out that it has influenced a wide area of machine learning, covering both classification and regression (CART). So a decision tree is a flow-chart-like structure, where each internal node denotes a test on an attribute, each branch represents the outcome of a test, and each leaf (or terminal) node holds a class label. The topmost node in a tree is the root node. ------------------------------------------------------------ Support us on Patreon ►AugmentedStartups.info/Patreon Chat to us on Discord ►AugmentedStartups.info/discord Interact with us on Facebook ►AugmentedStartups.info/Facebook Check my latest work on Instagram ►AugmentedStartups.info/instagram Learn Advanced Tutorials on Udemy ►AugmentedStartups.info/udemy ------------------------------------------------------------ To learn more on Artificial Intelligence, Augmented Reality IoT, Deep Learning FPGAs, Arduinos, PCB Design and Image Processing then check out http://augmentedstartups.info/home Please Like and Subscribe for more videos :)
Views: 111770 Augmented Startups
Ensemble learners
 
02:52
This video is part of the Udacity course "Machine Learning for Trading". Watch the full course at https://www.udacity.com/course/ud501
Views: 43343 Udacity
Mining Patterns in Data using Search Algorithms
 
04:36
Large amounts of data are nowadays available in many areas of industry and science. Prof. Siegfried Nijssen argues that many problems concerning the analysis of data can be seen as constraint-based data mining problems and discusses the efficient algorithms that he developed to solve these problems.
Logistic Regression - Fun and Easy Machine Learning
 
07:44
Logistic Regression - Fun and Easy Machine Learning ►FREE YOLO GIFT - http://augmentedstartups.info/yolofreegiftsp ►KERAS Course - https://www.udemy.com/machine-learning-fun-and-easy-using-python-and-keras/?couponCode=YOUTUBE_ML Logistic regression is another technique borrowed by machine learning from the field of statistics. It is the go-to method for classification problems. Despite the name “logistic regression” this is not an algorithm for regression Logistic Regression is a little bit similar to Linear Regression in the sense that both have the goal of estimating the values for the parameters/coefficients, so the at the end of the training of the machine learning model we got a function that best describe the relationship between the known input and the output values... ------------------------------------------------------------ Support us on Patreon ►AugmentedStartups.info/Patreon Chat to us on Discord ►AugmentedStartups.info/discord Interact with us on Facebook ►AugmentedStartups.info/Facebook Check my latest work on Instagram ►AugmentedStartups.info/instagram Learn Advanced Tutorials on Udemy ►AugmentedStartups.info/udemy ------------------------------------------------------------ To learn more on Artificial Intelligence, Augmented Reality IoT, Deep Learning FPGAs, Arduinos, PCB Design and Image Processing then check out http://augmentedstartups.info/home Please Like and Subscribe for more videos :)
Views: 54112 Augmented Startups
Mining Large Multi-Aspect Data: Algorithms and Applications
 
27:57
Author: Evangelos Papalexakis, Department of Computer Science and Engineering, University of California, Riverside Abstract: What does a person’s brain activity look like when they read the word apple? How does it differ from the activity of the same (or even a different person) when reading about an airplane? How can we identify parts of the human brain that are active for different semantic concepts? On a seemingly unrelated setting, how can we model and mine the knowledge on web (e.g., subject-verb-object triplets), in order to find hidden emerging patterns? Our proposed answer to both problems (and many more) is through bridging signal processing and large-scale multi-aspect data mining. Specifically, language in the brain, along with many other real-word processes and phenomena, have different aspects, such as the various semantic stimuli of the brain activity (apple or airplane), the particular person whose activity we analyze, and the measurement technique. In the above example, the brain regions with high activation for “apple” will likely differ from the ones for “airplane”. Nevertheless, each aspect of the activity is a signal of the same underlying physical phenomenon: language understanding in the human brain. Taking into account all aspects of brain activity results in more accurate models that can drive scientific discovery (e.g, identifying semantically coherent brain regions). In addition to the above Neurosemantics application, multi-aspect data appear in numerous scenarios such as mining knowledge on the web, where different aspects in the data include entities in a knowledge base and the links between them or search engine results for those entities, and multi-aspect graph mining, with the example of multi-view social networks, where we observe social interactions of people under different means of communication, and we use all aspects of the communication to extract communities more accurately. The main thesis of our work is that many real-world problems, such as the aforementioned, benefit from jointly modeling and analyzing the multi-aspect data associated with the underlying phenomenon we seek to uncover. In this thesis we develop scalable and interpretable algorithms for mining big multiaspect data, with emphasis on tensor decomposition. We present algorithmic advances on scaling up and parallelizing tensor decomposition and assessing the quality of its results, that have enabled the analysis of multi-aspect data that the state-of-the-art could not support. Indicatively, our proposed methods speed up the state-of-the-art by up to two orders of magnitude, and are able to assess the quality for 100 times larger tensors. Furthermore, we present results on multi-aspect data applications focusing on Neurosemantics and Social Networks and the Web, demonstrating the effectiveness of multiaspect modeling and mining. We conclude with our future vision on bridging Signal Processing and Data Science for real-world applications. More on http://www.kdd.org/kdd2017/ KDD2017 Conference is published on http://videolectures.net/
Views: 120 KDD2017 video
Leveraging Propagation for Data Mining: Models, Algorithms and Applications (Part 1)
 
59:49
Authors: Naren Ramakrishnan, Department of Computer Science, Virginia Polytechnic Institute and State University B. Aditya Prakash, Department of Computer Science, Virginia Polytechnic Institute and State University Abstract: Can we infer if a user is sick from her tweet? How do opinions get formed in online forums? Which people should we immunize to prevent an epidemic as fast as possible? How do we quickly zoom out of a graph? Graphs - also known as networks - are powerful tools for modeling processes and situations of interest in real life domains of social systems, cyber-security, epidemiology, and biology. They are ubiquitous, from online social networks, gene-regulatory networks, to router graphs. This tutorial will cover recent and state-of-the-art research on how propagation-like processes can help big-data mining specifically involving large networks and time-series, algorithms behind network problems, and their practical applications in various diverse settings. Topics include diffusion and virus propagation in networks, anomaly and outbreak detection, event prediction and connections with work in public health, the web and online media, social sciences, humanities, and cyber-security. More on http://www.kdd.org/kdd2016/ KDD2016 Conference is published on http://videolectures.net/
Views: 109 KDD2016 video
K mean clustering algorithm with solve example
 
12:13
Take the Full Course of Datawarehouse What we Provide 1)22 Videos (Index is given down) + Update will be Coming Before final exams 2)Hand made Notes with problems for your to practice 3)Strategy to Score Good Marks in DWM To buy the course click here: https://goo.gl/to1yMH or Fill the form we will contact you https://goo.gl/forms/2SO5NAhqFnjOiWvi2 if you have any query email us at [email protected] or [email protected] Index Introduction to Datawarehouse Meta data in 5 mins Datamart in datawarehouse Architecture of datawarehouse how to draw star schema slowflake schema and fact constelation what is Olap operation OLAP vs OLTP decision tree with solved example K mean clustering algorithm Introduction to data mining and architecture Naive bayes classifier Apriori Algorithm Agglomerative clustering algorithmn KDD in data mining ETL process FP TREE Algorithm Decision tree
Views: 320923 Last moment tuitions
Boosting
 
02:25
This video is part of the Udacity course "Machine Learning for Trading". Watch the full course at https://www.udacity.com/course/ud501
Views: 113231 Udacity
Random Forest - Fun and Easy Machine Learning
 
07:38
Random Forest - Fun and Easy Machine Learning ►FREE YOLO GIFT - http://augmentedstartups.info/yolofreegiftsp ►KERAS Course - https://www.udemy.com/machine-learning-fun-and-easy-using-python-and-keras/?couponCode=YOUTUBE_ML Hey Guys, and welcome to another Fun and Easy Machine Learning Algorithm on Random Forests. Random forest algorithm is a one of the most popular and most powerful supervised Machine Learning algorithm in Machine Learning that is capable of performing both regression and classification tasks. As the name suggest, this algorithm creates the forest with a number of decision trees. In general, the more trees in the forest the more robust the prediction. In the same way in the random forest classifier, the higher the number of trees in the forest gives the high accuracy results. To model multiple decision trees to create the forest you are not going to use the same method of constructing the decision with information gain or gini index approach, amongst other algorithms. If you are not aware of the concepts of decision tree classifier, Please check out my lecture here on Decision Tree CART for Machine learning. You will need to know how the decision tree classifier works before you can learn the working nature of the random forest algorithm. ------------------------------------------------------------ Support us on Patreon ►AugmentedStartups.info/Patreon Chat to us on Discord ►AugmentedStartups.info/discord Interact with us on Facebook ►AugmentedStartups.info/Facebook Check my latest work on Instagram ►AugmentedStartups.info/instagram Learn Advanced Tutorials on Udemy ►AugmentedStartups.info/udemy ------------------------------------------------------------ To learn more on Artificial Intelligence, Augmented Reality IoT, Deep Learning FPGAs, Arduinos, PCB Design and Image Processing then check out http://augmentedstartups.info/home Please Like and Subscribe for more videos :)
Views: 177797 Augmented Startups
Machine Learning Algorithms | Machine Learning Tutorial | Data Science Training | Edureka
 
45:16
( Data Science Training - https://www.edureka.co/data-science ) This Machine Learning Algorithms Tutorial shall teach you what machine learning is, and the various ways in which you can use machine learning to solve a problem! Towards the end, you will learn how to prepare a dataset for model creation and validation and how you can create a model using any machine learning algorithm! In this Machine Learning Algorithms Tutorial video you will understand: 1) What is an Algorithm? 2) What is Machine Learning? 3) How is a problem solved using Machine Learning? 4) Types of Machine Learning 5) Machine Learning Algorithms 6) Demo Subscribe to our channel to get video updates. Hit the subscribe button above. Check our complete Data Science playlist here: https://goo.gl/60NJJS #MachineLearningAlgorithms #Datasciencetutorial #Datasciencecourse #datascience How it Works? 1. There will be 30 hours of instructor-led interactive online classes, 40 hours of assignments and 20 hours of project 2. We have a 24x7 One-on-One LIVE Technical Support to help you with any problems you might face or any clarifications you may require during the course. 3. You will get Lifetime Access to the recordings in the LMS. 4. At the end of the training you will have to complete the project based on which we will provide you a Verifiable Certificate! - - - - - - - - - - - - - - About the Course Edureka's Data Science course will cover the whole data life cycle ranging from Data Acquisition and Data Storage using R-Hadoop concepts, Applying modelling through R programming using Machine learning algorithms and illustrate impeccable Data Visualization by leveraging on 'R' capabilities. - - - - - - - - - - - - - - Why Learn Data Science? Data Science training certifies you with ‘in demand’ Big Data Technologies to help you grab the top paying Data Science job title with Big Data skills and expertise in R programming, Machine Learning and Hadoop framework. After the completion of the Data Science course, you should be able to: 1. Gain insight into the 'Roles' played by a Data Scientist 2. Analyse Big Data using R, Hadoop and Machine Learning 3. Understand the Data Analysis Life Cycle 4. Work with different data formats like XML, CSV and SAS, SPSS, etc. 5. Learn tools and techniques for data transformation 6. Understand Data Mining techniques and their implementation 7. Analyse data using machine learning algorithms in R 8. Work with Hadoop Mappers and Reducers to analyze data 9. Implement various Machine Learning Algorithms in Apache Mahout 10. Gain insight into data visualization and optimization techniques 11. Explore the parallel processing feature in R - - - - - - - - - - - - - - Who should go for this course? The course is designed for all those who want to learn machine learning techniques with implementation in R language, and wish to apply these techniques on Big Data. The following professionals can go for this course: 1. Developers aspiring to be a 'Data Scientist' 2. Analytics Managers who are leading a team of analysts 3. SAS/SPSS Professionals looking to gain understanding in Big Data Analytics 4. Business Analysts who want to understand Machine Learning (ML) Techniques 5. Information Architects who want to gain expertise in Predictive Analytics 6. 'R' professionals who want to captivate and analyze Big Data 7. Hadoop Professionals who want to learn R and ML techniques 8. Analysts wanting to understand Data Science methodologies For more information, Please write back to us at [email protected] or call us at IND: 9606058406 / US: 18338555775 (toll free). Instagram: https://www.instagram.com/edureka_learning/ Facebook: https://www.facebook.com/edurekaIN/ Twitter: https://twitter.com/edurekain LinkedIn: https://www.linkedin.com/company/edureka Customer Reviews: Gnana Sekhar Vangara, Technology Lead at WellsFargo.com, says, "Edureka Data science course provided me a very good mixture of theoretical and practical training. The training course helped me in all areas that I was previously unclear about, especially concepts like Machine learning and Mahout. The training was very informative and practical. LMS pre recorded sessions and assignmemts were very good as there is a lot of information in them that will help me in my job. The trainer was able to explain difficult to understand subjects in simple terms. Edureka is my teaching GURU now...Thanks EDUREKA and all the best. "
Views: 154980 edureka!
Hubs & Authorities
 
13:04
Big Data Analytics For more: http://www.anuradhabhatia.com
Views: 25188 Anuradha Bhatia
Andrew Ng Naive Bayes Generative Learning Algorithms
 
11:54
This set of videos come from Andrew Ng's courses on Stanford OpenClassroom at http://openclassroom.stanford.edu/MainFolder/HomePage.php OpenClassroom is the predecessor of the famous MOOC platform Coursera. However, some of these videos are not published in Coursera Machine Learning course, i.e., Newton's Methods, Naive Bayes, etc. We selected some of them to share with you.
Views: 38553 Wang Zhiyang
Data Mining - Clustering
 
06:52
What is clustering Partitioning a data into subclasses. Grouping similar objects. Partitioning the data based on similarity. Eg:Library. Clustering Types Partitioning Method Hierarchical Method Agglomerative Method Divisive Method Density Based Method Model based Method Constraint based Method These are clustering Methods or types. Clustering Algorithms,Clustering Applications and Examples are also Explained.
Linear Regression - Machine Learning Fun and Easy
 
07:47
Linear Regression - Machine Learning Fun and Easy ►FREE YOLO GIFT - http://augmentedstartups.info/yolofreegiftsp ►KERAS Course - https://www.udemy.com/machine-learning-fun-and-easy-using-python-and-keras/?couponCode=YOUTUBE_ML Hi and welcome to a new lecture in the Fun and Easy Machine Learning Series. Today I’ll be talking about Linear Regression. We show you also how implement a linear regression in excel Linear regression attempts to model the relationship between two variables by fitting a linear equation to observed data. One variable is considered to be an explanatory variable, and the other is considered to be a dependent variable. Dependent Variable – Variable who’s values we want to explain or forecast Independent or explanatory Variable that Explains the other variable. Values are independent. Dependent variable can be denoted as y, so imagine a child always asking y is he dependent on his parents. And then you can imagine the X as your ex boyfriend/girlfriend who is independent because they don’t need or depend on you. A good way to remember it. Anyways Used for 2 Applications To Establish if there is a relation between 2 variables or see if there is statistically signification relationship between the two variables- • To see how increase in sin tax has an effect on how many cigarettes packs are consumed • Sleep hours vs test scores • Experience vs Salary • Pokemon vs Urban Density • House floor area vs House price Forecast new observations – Can use what we know to forecast unobserved values Here are some other examples of ways that linear regression can be applied. • So say the sales of ROI of Fidget spinners over time. • Stock price over time • Predict price of Bitcoin over time. Linear Regression is also known as the line of best fit The line of best fit can be represented by the linear equation y = a + bx or y = mx + b or y = b0+b1x You most likely learnt this in school. So b is is the intercept, if you increase this variable, your intercept moves up or down along the y axis. M is your slope or gradient, if you change this, then your line rotates along the intercept. Data is actually a series of x and y observations as shown on this scatter plot. They do not follow a straight line however they do follow a linear pattern hence the term linear regression Assuming we already have the best fit line, We can calculate the error term Epsilon. Also known as the Residual. And this is the term that we would like to minimize along all the points in the data series. So say if we have our linear equation but also represented in statisitical notation. The residual fit in to our equation as shown y = b0+b1x + e ------------------------------------------------------------ Support us on Patreon ►AugmentedStartups.info/Patreon Chat to us on Discord ►AugmentedStartups.info/discord Interact with us on Facebook ►AugmentedStartups.info/Facebook Check my latest work on Instagram ►AugmentedStartups.info/instagram Learn Advanced Tutorials on Udemy ►AugmentedStartups.info/udemy ------------------------------------------------------------ To learn more on Artificial Intelligence, Augmented Reality IoT, Deep Learning FPGAs, Arduinos, PCB Design and Image Processing then check out http://augmentedstartups.info/home Please Like and Subscribe for more videos :)
Views: 114785 Augmented Startups
How kNN algorithm works
 
04:42
In this video I describe how the k Nearest Neighbors algorithm works, and provide a simple example using 2-dimensional data and k = 3. This presentation is available at: http://prezi.com/ukps8hzjizqw/?utm_campaign=share&utm_medium=copy
Views: 387492 Thales Sehn Körting
Decision Tree with Solved Example in English | DWM | ML | BDA
 
21:21
Take the Full Course of Artificial Intelligence What we Provide 1) 28 Videos (Index is given down) 2)Hand made Notes with problems for your to practice 3)Strategy to Score Good Marks in Artificial Intelligence Sample Notes : https://goo.gl/aZtqjh To buy the course click https://goo.gl/H5QdDU if you have any query related to buying the course feel free to email us : [email protected] Other free Courses Available : Python : https://goo.gl/2gftZ3 SQL : https://goo.gl/VXR5GX Arduino : https://goo.gl/fG5eqk Raspberry pie : https://goo.gl/1XMPxt Artificial Intelligence Index 1)Agent and Peas Description 2)Types of agent 3)Learning Agent 4)Breadth first search 5)Depth first search 6)Iterative depth first search 7)Hill climbing 8)Min max 9)Alpha beta pruning 10)A* sums 11)Genetic Algorithm 12)Genetic Algorithm MAXONE Example 13)Propsotional Logic 14)PL to CNF basics 15) First order logic solved Example 16)Resolution tree sum part 1 17)Resolution tree Sum part 2 18)Decision tree( ID3) 19)Expert system 20) WUMPUS World 21)Natural Language Processing 22) Bayesian belief Network toothache and Cavity sum 23) Supervised and Unsupervised Learning 24) Hill Climbing Algorithm 26) Heuristic Function (Block world + 8 puzzle ) 27) Partial Order Planing 28) GBFS Solved Example
Views: 196828 Last moment tuitions
9. Modeling and Discovery of Sequence Motifs
 
01:22:06
MIT 7.91J Foundations of Computational and Systems Biology, Spring 2014 View the complete course: http://ocw.mit.edu/7-91JS14 Instructor: Christopher Burge This lecture by Prof. Christopher Burge covers modeling and discovery of sequence motifs. He gives the example of the Gibbs sampling algorithm. He covers information content of a motif, and he ends with parameter estimation for motif models. License: Creative Commons BY-NC-SA More information at http://ocw.mit.edu/terms More courses at http://ocw.mit.edu
Views: 10061 MIT OpenCourseWare
Support Vector Machine (SVM) - Fun and Easy Machine Learning
 
07:28
Support Vector Machine (SVM) - Fun and Easy Machine Learning ►FREE YOLO GIFT - http://augmentedstartups.info/yolofreegiftsp ►KERAS Course - https://www.udemy.com/machine-learning-fun-and-easy-using-python-and-keras/?couponCode=YOUTUBE_ML A Support Vector Machine (SVM) is a discriminative classifier formally defined by a separating hyperplane. In other words, given labeled training data (supervised learning), the algorithm outputs an optimal hyperplane which categorizes new examples. To understand SVM’s a bit better, Lets first take a look at why they are called support vector machines. So say we got some sample data over here of features that classify whether a observed picture is a dog or a cat, so we can for example look at snout length or and ear geometry if we assume that dogs generally have longer snouts and cat have much more pointy ear shapes. So how do we decide where to draw our decision boundary? Well we can draw it over here or here or like this. Any of these would be fine, but what would be the best? If we do not have the optimal decision boundary we could incorrectly mis-classify a dog with a cat. So if we draw an arbitrary separation line and we use intuition to draw it somewhere between this data point for the dog class and this data point of the cat class. These points are known as support Vectors – Which are defined as data points that the margin pushes up against or points that are closest to the opposing class. So the algorithm basically implies that only support vector are important whereas other training examples are ‘ignorable’. An example of this is so that if you have our case of a dog that looks like a cat or cat that is groomed like a dog, we want our classifier to look at these extremes and set our margins based on these support vectors. ------------------------------------------------------------ Support us on Patreon ►AugmentedStartups.info/Patreon Chat to us on Discord ►AugmentedStartups.info/discord Interact with us on Facebook ►AugmentedStartups.info/Facebook Check my latest work on Instagram ►AugmentedStartups.info/instagram Learn Advanced Tutorials on Udemy ►AugmentedStartups.info/udemy ------------------------------------------------------------ To learn more on Artificial Intelligence, Augmented Reality IoT, Deep Learning FPGAs, Arduinos, PCB Design and Image Processing then check out http://augmentedstartups.info/home Please Like and Subscribe for more videos :)
Views: 138965 Augmented Startups
Introduction to Data Mining in SQL Server Analysis Services
 
01:27:07
Data mining is one of the key hidden gems inside of Analysis Services but has traditionally had a steep learning curve. In this session, you'll learn how to create a data mining model to predict who is the best customer for you and learn how to use other algorithms to spend your marketing model wisely. You'll also see how to use Time Series analysis for budget and forecast prediction. Finally, you'll learn how to integrate data mining into your application through SSIS or custom coding.
Views: 8881 PASStv
The KNN Algorithm: A quick tutorial
 
04:32
A quick, 5-minute tutorial about how the KNN algorithm for classification works
Views: 53695 Krishna Kinnal
Algorithms for mining uncertain graph data (KDD 2012)
 
23:33
Algorithms for mining uncertain graph data KDD 2012 Jianzhong Li With the rapid development of advanced data acquisition techniques such as high-throughput biological experiments and wireless sensor networks, large amount of graph-structured data, graph data for short, have been collected in a wide range of applications. Discovering knowledge from graph data has witnessed a number of applications and received a lot of research attentions. Recently, it is observed that uncertainties are inherent in the structures of some graph data. For example, protein-protein interaction (PPI) data can be represented as a graph, where vertices represent proteins, and edges represent PPI's. Due to the limits of PPI detection methods, it is uncertain that a detected PPI exist in practice. Other examples of uncertain graph data include topologies of wireless sensor networks, social networks and so on. Managing and mining such large-scale uncertain graph data is of both theoretical and practical significance. Many solid works have been conducted on uncertain graph mining from the aspects of models, semantics, methodology and algorithms in last few years. A number of research papers on managing and mining uncertain graph data have been published in the database and data mining conferences such as VLDB, ICDE, KDD, CIKM and EDBT. This talk focuses on the data model, semantics, computational complexity and algorithms of uncertain graph mining. In the talk, some typical research work in the field of uncertain graph mining will also be introduced, including frequent subgraph pattern mining, dense subgraph detection, reliable subgraph discovery, and clustering on uncertain graph data.
Weka Tutorial 24: Model Comparison (Model Evaluation)
 
11:19
In this tutorial, you will learn how to use Weka Experimenter to compare the performances of multiple classifiers on single or multiple datasets. Please subscribe to get more updates and like if the tutorial is useful. Link in: http://www.linkedin.com/pub/rushdi-shams/3b/83b/9b3
Views: 28394 Rushdi Shams
KNN Algorithm - How KNN Algorithm Works With Example | Data Science For Beginners | Simplilearn
 
27:43
This KNN Algorithm tutorial (K-Nearest Neighbor Classification Algorithm tutorial) will help you understand what is KNN, why do we need KNN, how do we choose the factor 'K', when do we use KNN, how does KNN algorithm work and you will also see a use case demo showing how to predict whether a person will have diabetes or not using KNN algorithm. KNN algorithm can be applied to both classification and regression problems. Apparently, within the Data Science industry, it's more widely used to solve classification problems. It’s a simple algorithm that stores all available cases and classifies any new cases by taking a majority vote of its k neighbors. Now lets deep dive into this video to understand what is KNN algorithm and how does it actually works. Below topics are explained in this K-Nearest Neighbor Classification Algorithm (KNN Algorithm) tutorial: 1. Why do we need KNN? 2. What is KNN? 3. How do we choose the factor 'K'? 4. When do we use KNN? 5. How does KNN algorithm work? 6. Use case - Predict whether a person will have diabetes or not To learn more about Machine Learning, subscribe to our YouTube channel: https://www.youtube.com/user/Simplilearn?sub_confirmation=1 You can also go through the slides here: https://goo.gl/XP6xcp Watch more videos on Machine Learning: https://www.youtube.com/watch?v=7JhjINPwfYQ&list=PLEiEAq2VkUULYYgj13YHUWmRePqiu8Ddy #MachineLearningAlgorithms #Datasciencecourse #datascience #SimplilearnMachineLearning #MachineLearningCourse Simplilearn’s Machine Learning course will make you an expert in Machine Learning, a form of Artificial Intelligence that automates data analysis to enable computers to learn and adapt through experience to do specific tasks without explicit programming. You will master Machine Learning concepts and techniques including supervised and unsupervised learning, mathematical and heuristic aspects, hands-on modeling to develop algorithms and prepare you for the role of Machine Learning Engineer Why learn Machine Learning? Machine Learning is rapidly being deployed in all kinds of industries, creating a huge demand for skilled professionals. The Machine Learning market size is expected to grow from USD 1.03 billion in 2016 to USD 8.81 billion by 2022, at a Compound Annual Growth Rate (CAGR) of 44.1% during the forecast period. You can gain in-depth knowledge of Machine Learning by taking our Machine Learning certification training course. With Simplilearn’s Machine Learning course, you will prepare for a career as a Machine Learning engineer as you master concepts and techniques including supervised and unsupervised learning, mathematical and heuristic aspects, and hands-on modeling to develop algorithms. Those who complete the course will be able to: 1. Master the concepts of supervised, unsupervised and reinforcement learning concepts and modeling. 2. Gain practical mastery over principles, algorithms, and applications of Machine Learning through a hands-on approach which includes working on 28 projects and one capstone project. 3. Acquire thorough knowledge of the mathematical and heuristic aspects of Machine Learning. 4. Understand the concepts and operation of support vector machines, kernel SVM, Naive Bayes, decision tree classifier, random forest classifier, logistic regression, K-nearest neighbors, K-means clustering and more. 5. Model a wide variety of robust Machine Learning algorithms including deep learning, clustering, and recommendation systems The Machine Learning Course is recommended for: 1. Developers aspiring to be a data scientist or Machine Learning engineer 2. Information architects who want to gain expertise in Machine Learning algorithms 3. Analytics professionals who want to work in Machine Learning or artificial intelligence 4. Graduates looking to build a career in data science and Machine Learning Learn more at: https://www.simplilearn.com/big-data-and-analytics/machine-learning-certification-training-course?utm_campaign=What-is-Machine-Learning-7JhjINPwfYQ&utm_medium=Tutorials&utm_source=youtube For more updates on courses and tips follow us on: - Facebook: https://www.facebook.com/Simplilearn - Twitter: https://twitter.com/simplilearn - LinkedIn: https://www.linkedin.com/company/simplilearn - Website: https://www.simplilearn.com Get the Android app: http://bit.ly/1WlVo4u Get the iOS app: http://apple.co/1HIO5J0
Views: 32793 Simplilearn
Decision Tree 1: how it works
 
09:26
Full lecture: http://bit.ly/D-Tree A Decision Tree recursively splits training data into subsets based on the value of a single attribute. Each split corresponds to a node in the. Splitting stops when every subset is pure (all elements belong to a single class) -- this can always be achieved, unless there are duplicate training examples with different classes.
Views: 481060 Victor Lavrenko
Nonparametric Bayesian Methods: Models, Algorithms, and Applications I
 
01:06:01
Tamara Broderick, MIT https://simons.berkeley.edu/talks/tamara-broderick-michael-jordan-01-25-2017-1 Foundations of Machine Learning Boot Camp
Views: 13301 Simons Institute
Data Mining Lecture -- Decision Tree | Solved Example (Eng-Hindi)
 
29:13
-~-~~-~~~-~~-~- Please watch: "PL vs FOL | Artificial Intelligence | (Eng-Hindi) | #3" https://www.youtube.com/watch?v=GS3HKR6CV8E -~-~~-~~~-~~-~-
Views: 169666 Well Academy
Naïve Bayes Classifier -  Fun and Easy Machine Learning
 
11:59
Naive Bayes Classifier- Fun and Easy Machine Learning ►FREE YOLO GIFT - http://augmentedstartups.info/yolofreegiftsp ►KERAS Course - https://www.udemy.com/machine-learning-fun-and-easy-using-python-and-keras/?couponCode=YOUTUBE_ML Now Naïve Bayes is based on Bayes Theorem also known as conditional Theorem, which you can think of it as an evidence theorem or trust theorem. So basically how much can you trust the evidence that is coming in, and it’s a formula that describes how much you should believe the evidence that you are being presented with. An example would be a dog barking in the middle of the night. If the dog always barks for no good reason, you would become desensitized to it and not go check if anything is wrong, this is known as false positives. However if the dog barks only whenever someone enters your premises, you’d be more likely to act on the alert and trust or rely on the evidence from the dog. So Bayes theorem is a mathematic formula for how much you should trust evidence. So lets take a look deeper at the formula, • We can start of with the Prior Probability which describes the degree to which we believe the model accurately describes reality based on all of our prior information, So how probable was our hypothesis before observing the evidence. • Here we have the likelihood which describes how well the model predicts the data. This is term over here is the normalizing constant, the constant that makes the posterior density integrate to one. Like we seen over here. • And finally the output that we want is the posterior probability which represents the degree to which we believe a given model accurately describes the situation given the available data and all of our prior information. So how probable is our hypothesis given the observed evidence. So with our example above. We can view the probability that we play golf given it is sunny = the probability that we play golf given a yes times the probability it being sunny divided by probability of a yes. This uses the golf example to explain Naive Bayes. ------------------------------------------------------------ Support us on Patreon ►AugmentedStartups.info/Patreon Chat to us on Discord ►AugmentedStartups.info/discord Interact with us on Facebook ►AugmentedStartups.info/Facebook Check my latest work on Instagram ►AugmentedStartups.info/instagram Learn Advanced Tutorials on Udemy ►AugmentedStartups.info/udemy ------------------------------------------------------------ To learn more on Artificial Intelligence, Augmented Reality IoT, Deep Learning FPGAs, Arduinos, PCB Design and Image Processing then check out http://augmentedstartups.info/home Please Like and Subscribe for more videos :)
Views: 109494 Augmented Startups
Machine Learning - Supervised VS Unsupervised Learning
 
05:04
Enroll in the course for free at: https://bigdatauniversity.com/courses/machine-learning-with-python/ Machine Learning can be an incredibly beneficial tool to uncover hidden insights and predict future trends. This free Machine Learning with Python course will give you all the tools you need to get started with supervised and unsupervised learning. This Machine Learning with Python course dives into the basics of machine learning using an approachable, and well-known, programming language. You'll learn about Supervised vs Unsupervised Learning, look into how Statistical Modeling relates to Machine Learning, and do a comparison of each. Look at real-life examples of Machine learning and how it affects society in ways you may not have guessed! Explore many algorithms and models: Popular algorithms: Classification, Regression, Clustering, and Dimensional Reduction. Popular models: Train/Test Split, Root Mean Squared Error, and Random Forests. Get ready to do more learning than your machine! Connect with Big Data University: https://www.facebook.com/bigdatauniversity https://twitter.com/bigdatau https://www.linkedin.com/groups/4060416/profile ABOUT THIS COURSE •This course is free. •It is self-paced. •It can be taken at any time. •It can be audited as many times as you wish. https://bigdatauniversity.com/courses/machine-learning-with-python/
Views: 73212 Cognitive Class
eXtreme Gradient Boosting XGBoost Algorithm with R - Example in Easy Steps with One-Hot Encoding
 
28:57
Provides easy to apply example of eXtreme Gradient Boosting XGBoost Algorithm with R . Data: https://goo.gl/VoHhyh R file: https://goo.gl/qFPsmi Machine Learning videos: https://goo.gl/WHHqWP Includes, - Packages needed and data - Partition data - Creating matrix and One-Hot Encoding for Factor variables - Parameters - eXtreme Gradient Boosting Model - Training & test error plot - Feature importance plot - Prediction & confusion matrix for test data - Booster parameters R is a free software environment for statistical computing and graphics, and is widely used by both academia and industry. R software works on both Windows and Mac-OS. It was ranked no. 1 in a KDnuggets poll on top languages for analytics, data mining, and data science. RStudio is a user friendly environment for R that has become popular.
Views: 18084 Bharatendra Rai
Naive Bayes Theorem | Introduction to Naive Bayes Theorem | Machine Learning Classification
 
09:50
Naive Bayes is a machine learning algorithm for classification problems. It is based on Bayes’ probability theorem. It is primarily used for text classification which involves high dimensional training data sets. A few examples are spam filtration, sentimental analysis, and classifying news articles. It is not only known for its simplicity, but also for its effectiveness. It is fast to build models and make predictions with Naive Bayes algorithm. Naive Bayes is the first algorithm that should be considered for solving text classification problem. Hence, you should learn this algorithm thoroughly. This video will talk about below: 1. Machine Learning Classification 2. Naive Bayes Theorem About us: HackerEarth is building the largest hub of programmers to help them practice and improve their programming skills. At HackerEarth, programmers: 1. Solve problems on Algorithms, DS, ML etc(https://goo.gl/6G4NjT). 2. Participate in coding contests(https://goo.gl/plOmbn) 3. Participate in hackathons(https://goo.gl/btD3D2) Subscribe Our Channel For More Updates : https://goo.gl/suzeTB For More Updates, Please follow us on: Facebook : https://goo.gl/40iEqB Twitter : https://goo.gl/LcTAsM LinkedIn : https://goo.gl/iQCgJh Blog : https://goo.gl/9yOzvG
Views: 79450 HackerEarth
Leveraging Propagation for Data Mining: Models, Algorithms and Applications (Part 2)
 
50:55
Authors: Naren Ramakrishnan, Department of Computer Science, Virginia Polytechnic Institute and State University B. Aditya Prakash, Department of Computer Science, Virginia Polytechnic Institute and State University Abstract: Can we infer if a user is sick from her tweet? How do opinions get formed in online forums? Which people should we immunize to prevent an epidemic as fast as possible? How do we quickly zoom out of a graph? Graphs - also known as networks - are powerful tools for modeling processes and situations of interest in real life domains of social systems, cyber-security, epidemiology, and biology. They are ubiquitous, from online social networks, gene-regulatory networks, to router graphs. This tutorial will cover recent and state-of-the-art research on how propagation-like processes can help big-data mining specifically involving large networks and time-series, algorithms behind network problems, and their practical applications in various diverse settings. Topics include diffusion and virus propagation in networks, anomaly and outbreak detection, event prediction and connections with work in public health, the web and online media, social sciences, humanities, and cyber-security. More on http://www.kdd.org/kdd2016/ KDD2016 Conference is published on http://videolectures.net/
Views: 51 KDD2016 video
Leveraging Propagation for Data Mining: Models, Algorithms and Applications (Part 3)
 
01:12:06
Authors: Naren Ramakrishnan, Department of Computer Science, Virginia Polytechnic Institute and State University B. Aditya Prakash, Department of Computer Science, Virginia Polytechnic Institute and State University Abstract: Can we infer if a user is sick from her tweet? How do opinions get formed in online forums? Which people should we immunize to prevent an epidemic as fast as possible? How do we quickly zoom out of a graph? Graphs - also known as networks - are powerful tools for modeling processes and situations of interest in real life domains of social systems, cyber-security, epidemiology, and biology. They are ubiquitous, from online social networks, gene-regulatory networks, to router graphs. This tutorial will cover recent and state-of-the-art research on how propagation-like processes can help big-data mining specifically involving large networks and time-series, algorithms behind network problems, and their practical applications in various diverse settings. Topics include diffusion and virus propagation in networks, anomaly and outbreak detection, event prediction and connections with work in public health, the web and online media, social sciences, humanities, and cyber-security. More on http://www.kdd.org/kdd2016/ KDD2016 Conference is published on http://videolectures.net/
Views: 40 KDD2016 video
How CNN (Convolutional Neural Networks - Deep Learning) algorithm works
 
08:56
In this video I present a simple example of a CNN (Convolutional Neural Network) applied to image classification of digits. CNN is one of the well known Deep Learning algorithms. I firstly explain the basics of Neural Networks, i.e. the artificial neuron, followed by the concept of convolution, and the common layers in a CNN, such as convolutional, pooling, fully connected, and softmax classification. I read several references to prepare this material, but the main references are: * Towards better exploiting convolutional neural networks for Remote Sensing scene classification. By Keiller Nogueira, Otávio Penatti, Jefersson dos Santos * Everything you wanted to know about Deep Learning for computer vision but were afraid to ask. By Moacir Ponti, Leonardo Ribeiro, Tiago Nazaré, Tu Bui, John Collomosse I also created an Octave (Matlab like) source code to implement the basic CNN showed in this video, which are available at my github. Please follow the link for more details on the source code: https://github.com/tkorting/youtube/tree/master/deep-learning-cnn This presentation is available at my Prezi site, at this link: http://prezi.com/n_r8p1ytanyh/?utm_campaign=share&utm_medium=copy Thanks for watching this video, please like and share, and subscribe to my channel. Regards
Views: 28986 Thales Sehn Körting
PageRank Algorithm - Example
 
10:11
Full Numerical Methods Course: http://bit.ly/numerical-methods-java FREE Beginner Java Course: http://bit.ly/2rMkyxN
Views: 58895 Balazs Holczer
Model Evaluation : ROC Curve, Confusion Matrix, Accuracy Ratio | Data Science
 
27:01
In this video you will learn about the different performance matrix used for model evaludation such as Receiver Operating Charateristics, Confusion matrix, Accuracy. This is used very well in evauating classfication models like deicision tree, Logistic regression, SVM ANalytics Study Pack : https://analyticuniversity.com Analytics University on Twitter : https://twitter.com/AnalyticsUniver Analytics University on Facebook : https://www.facebook.com/AnalyticsUniversity Logistic Regression in R: https://goo.gl/S7DkRy Logistic Regression in SAS: https://goo.gl/S7DkRy Logistic Regression Theory: https://goo.gl/PbGv1h Time Series Theory : https://goo.gl/54vaDk Time ARIMA Model in R : https://goo.gl/UcPNWx Survival Model : https://goo.gl/nz5kgu Data Science Career : https://goo.gl/Ca9z6r Machine Learning : https://goo.gl/giqqmx Data Science Case Study : https://goo.gl/KzY5Iu Big Data & Hadoop & Spark: https://goo.gl/ZTmHOA
Views: 14381 Big Edu
Predicting Stock Prices - Learn Python for Data Science #4
 
07:39
In this video, we build an Apple Stock Prediction script in 40 lines of Python using the scikit-learn library and plot the graph using the matplotlib library. The challenge for this video is here: https://github.com/llSourcell/predicting_stock_prices Victor's winning recommender code: https://github.com/ciurana2016/recommender_system_py Kevin's runner-up code: https://github.com/Krewn/learner/blob/master/FieldPredictor.py#L62 I created a Slack channel for us, sign up here: https://wizards.herokuapp.com/ Stock prediction with Tensorflow: https://nicholastsmith.wordpress.com/2016/04/20/stock-market-prediction-using-multi-layer-perceptrons-with-tensorflow/ Another great stock prediction tutorial: http://eugenezhulenev.com/blog/2014/11/14/stock-price-prediction-with-big-data-and-machine-learning/ This guy made 500K doing ML stuff with stocks: http://jspauld.com/post/35126549635/how-i-made-500k-with-machine-learning-and-hft Please share this video, like, comment and subscribe! That's what keeps me going. and please support me on Patreon!: https://www.patreon.com/user?u=3191693 Check out this youtube channel for some more cool Python tutorials: https://www.youtube.com/watch?v=RZF17FfRIIo Follow me: Twitter: https://twitter.com/sirajraval Facebook: https://www.facebook.com/sirajology Instagram: https://www.instagram.com/sirajraval/ Instagram: https://www.instagram.com/sirajraval/ Signup for my newsletter for exciting updates in the field of AI: https://goo.gl/FZzJ5w
Views: 513476 Siraj Raval
System Event Mining: Algorithms and Applications part 1
 
01:32:51
Authors: Genady Ya. Grabarnik, St. John's University Larisa Shwartz, IBM Thomas J. Watson Research Center Tao Li, Florida International University Abstract: Many systems, from computing systems, physical systems, business systems, to social systems, are only observable indirectly from the events they emit. Events can be defined as real-world occurrences and they typically involve changes of system states. Events are naturally temporal and are often stored as logs, e.g., business transaction logs, stock trading logs, sensor logs, computer system logs, HTTP requests, database queries, network traffic data, etc. These events capture system states and activities over time. For effective system management, a system needs to automatically monitor, characterize, and understand its behavior and dynamics, mine events to uncover useful patterns, and acquire the needed knowledge from historical log/event data. Event mining is a series of techniques for automatically and efficiently extracting valuable knowledge from historical event/log data and plays an important role in system management. The purpose of this tutorial is to present a variety of event mining approaches and applications with a focus on computing system management. It is mainly intended for researchers, practitioners, and graduate students who are interested in learning about the state of the art in event mining. Link to tutorial: https://users.cs.fiu.edu/~taoli/event-mining/ More on http://www.kdd.org/kdd2017/ KDD2017 Conference is published on http://videolectures.net/
Views: 210 KDD2017 video

Zantac 15 mg price
Diclofenac sodium 25 mg suppository
Diltiazem teva 200 mg
Bupropion generic australia
Synthroid generic substitute for viagra